
Jagiellonian University

Mathematics and Computer Science Faculty

Computer Science Institute

Dimension online of upgrowing
orders

Piotr Micek

Master Thesis

Advisor: Professor Pawe�l Idziak, Ph. D.

Kraków, June 2004

Abstract

We analyze the adaptive coloring online problem for the upgrowing
orders. We consider this problem as a two-person game. One person
builds an order one point at a time. The other person responds by
coloring the new point according to strictly determined rules. This
problem is equivalent to certain variant of the dimension online prob-
lem. The adaptive coloring problem can be also applied to the tasks
scheduling online problem. Until now no non-trivial lower bound for
these problems has been known. This paper contains a proof that for
orders of width at most d any algorithm can be forced to use almost
2 · d colors - in other words the lower bound for adaptive coloring
online problem of upgrowing orders of width at most d is almost 2 · d
colors.

Our considerations are motivated by the scheduling problem in a certain
parallel environment. Tasks to be done are coming online but it is unknown
how long their execution will take and when the next task appears. Tasks
may be self-dependent. Hence, with the new task x comes a (possibly empty)
list of tasks, which have to be executed before the execution of the new task
x. At the moment of appearance of the new task we must immediately
schedule a processor or group of processors which will execute this task. In
such environment we consider the optimal scheduling problem. It means that
tasks have to be executed as fast as it is possible but we also want to use the
least number of processors. The number of used processors will be compared
with the maximal number of independent tasks.

All online problems considered in this paper can be viewed as two-person
game. We call the players the Algorithm and the Spoiler. The Algorithm rep-
resents an online algorithm and the Spoiler represents an adaptive adversary.
The game is played in rounds. During each round the Spoiler introduces a
new point x to the order and describes comparabilities between x and points
from previous rounds. The Algorithm responds by assigning x to a chain.
The most important thing in online problems is that the previous Algorithm’s
moves (decisions) restrict his actual possibilities.

Kierstead, McNulty and Trotter [2] have investigated dimension-online(d)
problem. In the corresponding game the Spoiler builds an online order of
given width d while the Algorithm maintains its online realizer i.e., the set of
linear extensions that intersect to binary relation of partial ordering. During
each round the Spoiler adds point x to P (the poset of the game). Now the
Algorithm has to fix point x in all extensions already created. He may of
course create new extensions but he may not change relations between points
from previous rounds in extensions already created. Dimension-online(d) is

1

the largest integer so that the Spoiler has strategy generating poset of width
at most d which forces the Algorithm to use dimension-online(d) linear exten-
sions. Note that by game theoretic duality we may as well define dimension-
online(d) as the least integer so that there is an algorithm that never uses
more extensions for posets of width at most d. Since the dimension of an
order never exceeds its width it is natural to compare the dimension-online
of considered posets to their width. The main negative result of [2] is:

Theorem 1 (Kierstead,McNulty,Trotter [2]) For each d ≥ 3

dim-online(d) = ∞.

This result closes considerations under dimension-online(d). Felsner[1]
introduced the dimension-online-upgrowing(d) problem. In comparison with
the dimension-online(d) problem the moves (possibilities) of the Spoiler are
restricted to points which are maximal at the moment they are added to the
poset. We can say that new points are dropped from the top. In [1] Felsner
proved also an upper bound for this problem:

Theorem 2 (Felsner [1])

dim-online-upgrowing(d) ≤
(

d + 1

2

)

Further in paper [1] an adaptive-coloring-online-upgrowing(d) problem
(shortly - adaptive(d)) is defined. Let’s describe the game corresponding
to this problem. The Spoiler builds poset online upgrowing. During each
round the Spoiler adds to the poset point x which is maximal in the current
poset of the game. The Algorithm colors the new point x with some, non-
empty set of colors. During the coloring of the new point he may remove (but
never add) colors from other points. Following conditions must be respected:

• each point is colored by a non-empty set of colors

• during each round, for each color c the set of points colored by c form
a chain

The value adaptive(d) is defined as the largest integer so that the Spoiler
has a strategy forcing the Algorithm to use adaptive(d) colors. Equivalently
it is the least integer so that there is an algorithm that never uses more
colors. The paper [1] contains a proof of Theorem 3 (corrected by Kloch[3]).

Theorem 3 (Felsner [1],Kloch [3])

adaptive(d) = dimension-online-upgrowing(d)

2

Consider the scheduling problem described at the beginning of this paper.
The value scheduling-online(d) is defined as the minimal number of processors
necessary to execute in optimal time any group of tasks arriving online, where
d is the maximal number of tasks independent in this group.

Scheduling-online(d) and adaptive(d) turn out to be equivalent. Tasks
are treated as the points of a poset presented online in an up-growing way.
Dependencies between the tasks are the edges of the poset. Processors are
viewed as colors. For each processor tasks which were executed or scheduled
to it must form a chain. Scheduling task y to processor p which has been
executing task x independent with y we would not be sure whether processor
p would be free at the time task y could be executed; so there would be some
delay and this is not allowed.

Theorem 4

scheduling-online(d) = adaptive(d) = dim-online-upgrowing(d)

Hence, all these three problems are equivalent. In the rest of this paper
we deal with the adaptive(d) problem. As it was already mentioned the
following upper bound was proved in [1] because the algorithm for all online
posets can be as well applied to this particular upgrowing situation.

d ≤ adaptive(d) ≤
(

d + 1

2

)
(1)

The lower bound is trivial. It suffices for Bob to put antichain of d points.
Until now no better result has been known. First we will give few definitions.

Definition 5 By a poset online we mean a sequence (Pn) of posets in which
Pn+1 of Pn and a new point. This sequence starts with an empty poset.

Definition 6 By a poset upgrowing we mean poset online in which new
points must be maximal in the poset at the moment they are added.

Definition 7 A multicoloring of the poset is a coloring of each point of the
poset by a non-empty set of colors. For each color set of points containing
that color has to be a chain.

Definition 8 By an adaptive coloring online of poset upgrowing we mean
sequence of multicolorings of consecutively received posets of the poset online
upgrowing. Consecutive multicoloring must be integrated with previous ones.
This means that for each point p and for each multicoloring Mj in which p
occurs Mj+1(p) ⊆ Mj(p).

3

Definition 9 By an attack on point x we mean putting a new single point
only above x.

In our considerations we will need the following easy combinatorial Lemma.

Lemma 10 Suppose s balls are distributed into b boxes, i.e., s = s1+. . .+sb.
If s1 ≤ s2 ≤ . . . ≤ sb then for any m ≤ b we have

s1 + . . . + sm ≤ m · s
b

.

Now we are ready to state the main theorem of this paper.

Theorem 11 There is no online algorithm for adaptive coloring of upgrow-
ing posets with competitive ratio strictly smaller than 2, i.e. for c < 2 there
is no algorithm that uses only c · d colors, where d is the width of the poset.

This theorem easily follows from the following Lemma.

Lemma 12 For each ε > 0 and almost all d ∈ N the Spoiler has a strategy
that builds a poset P of width d, and eventually forces all possible algorithms
to use at least (2 − ε)d colors on P .

Proof. Fix 0 < ε < 2 and suppose d ≥ 256/ε6. Let c = �(2 − ε)d�. Now
our Lemma will be shown by describing a strategy for the Spoiler to force all
possible algorithms to use at least c + 1 colors. In the rest of our proof we
denote by c(x) the set of colors assigned (by the Algorithm) to the point x
of the poset P and c(X) =

⋃
x∈X c(x) whenever X ⊆ P.

The Spoiler will act in rounds, consecutively building levels Li of the
poset by adding new points to Li+1 that cover some of those from Li. The
set of the points from Li that are to be covered by the Spoiler is called the
base and denoted by Bi. Put L0 to be an antichain consisting of d elements
and B0 := L0.

S - single-colored0M - multi-colored0

...

base B
0

Suppose Li and Bi are already constructed by the Spoiler and let bi :=
|Bi|. The Algorithm responded by coloring the points of Li but the rest of the
Spoiler strategy depends only on how points of Bi are colored. In particular
Bi decomposes into a sum Bi = Mi ∪ Si. Mi = {x ∈ Bi : |c(x)| > 1} is the
set of multicolored points of Bi and Si is the set of points in Bi that were
colored by the Algorithm with a single color. Let mi := |Mi| and si := |Si|.

4

During the entire game the Algorithm has only c colors to use. Note that
on the level L0 the Algorithm is not restricted in using colors, in particular,
it can use up to c0 := c colors to color the set B0. However moving up to the
next level some of colors are going to be blocked by the Spoiler, so that they
cannot be used by the Algorithm any more. In fact we are interested in the
strictly decreasing sequence of numbers defined by

c0 = c
ci+1 = ci − 2�√bi� + 2bi

2bi−ci

(2)

We will show that:

ci bounds from above the number of colors the Algorithm
can use to color points from Bi and their succesors

(3)

Obviously, we can show (3) only after presenting the construction used
by the Spoiler. However to present this construction we will need that

ci ≤ 2bi − 2
√

bi (4)

Not going into details how the sets Bi’s are obtained we note now that
their sizes are given by

b0 = d
bi+1 = bi − �√bi� (5)

Now the fact that the inequality (4) is kept while going to the next level
follows immediately by comparing the leftmost and the rightmost value in
the following claim.

Claim For each i ≥ 0 we have

2bi − ci ≥ ε

2
bi + 2

√
b0 ≥ 2

√
bi

Proof. To see the second inequality note that bi+1 = bi − �√bi� ≤ bi

immediately gives bi ≤ b0. To see the first inequality we induct on i. For
i = 0 we recall out starting assumption c0 ≤ (2 − ε)b0 to get

2b0 − c0 ≥ 2b0 − (2 − ε)b0 = εb0 (6)

Our initial choice of b0 = d tells us that b0 ≥ 256
ε6 . Consequently for ε ≤ 2 we

have
εb0 ≥ ε

2
b0 + 2

√
b0,

5

which together with (6) gives

2b0 − c0 ≥ ε

2
b0 + 2

√
b0,

as required.
For the induction step we first observe that for b0 ≥ 256

ε6 the polynomial
ε2

8
x2 −2x+ ε

2

√
b0 takes nonnegative values. Consequently for x =

√
bi we get

2bi

ε
2
bi + 2

√
b0

≤ ε

4

√
bi. (7)

Since x ≤ 2�x� for x ≥ 1 we have ε
4

√
bi ≤ ε

2
�√bi� and we can rewrite (7) to

2bi

ε
2
bi + 2

√
b0

≤ ε

2
�
√

bi�. (8)

Now we can bound 2bi+1 − ci+1 from below as follows:

2bi+1 − ci+1 = 2(bi − �
√

bi�) − (ci − 2
√

bi +
2bi

2bi − ci

)

= (2bi − ci) − 2bi

2bi − ci

≥ ε

2
bi + 2

√
b0 − 2bi

ε
2
bi + 2

√
b0

≥ ε

2
bi + 2

√
b0 − ε

2
�
√

bi�
=

ε

2
bi+1 + 2

√
b0,

where the last inequality in the above display is obtained from (8). �

Note that since each point in Bi gets at least one color we get the follow-
ings upper bound on the size of Mi:

mi ≤ ci − bi. (9)

Knowing that mi + si = bi we immediately get the lower bound on the size
of Si:

si ≥ 2bi − ci. (10)

Again suppose Li and Bi are already constructed and colored. The next
level Li+1 is to consist of points that cover some of the ones from Bi.

6

• First each point x from Mi is attacked, i.e., it gets a succesor that
covers only x. Till now Li+1 has exactly mi points.

......

base B

S - single-colorediM - multi-coloredi

...

i

L in construction
i+1

• Now the Spoiler puts into Li+1 an antichain Ki+1 consisting of �√bi�
points each of which lies over all of the points from Bi. Now Li+1 has
mi + �√bi� points, which by (9) and (4) is bounded by

mi +
⌊√

bi

⌋
≤ ci − bi +

√
bi ≤ 2bi − 2

√
bi − bi +

√
bi ≤ bi. (11)

...

......

K

base B

...

S - single-colorediM - multi-coloredi

i

i+1

Spoiler’s strategy will eventually build Li+1 with exactly bi points. This
is to be accomplished by adding exactly bi − (mi + �√bi�) new points,
but the way the Spoiler adds them depends on how points in Ki+1 are
colored.

• After the Algorithm colors all points from Ki+1 the Spoiler lists them
so that

for x, y ∈ Ki+1 the point x preceeds y in this list
if |C(x) ∩ C(Si)| ≤ |C(y) ∩ C(Si)| (12)

7

For x ∈ Ki+1, put

U(x) = {s ∈ Si : c(s) ⊆ c(x)} , (13)

i.e., U(x) consists of those points b from the base that are single-colored
and the color of b is used by the Algorithm to color x. Note that, even
if c(x) will be changed in the future the set U(x) will remain the same.

• Next, the Spoiler creates Ai+1 = ∅ and than he follows the order of the
list defined by (12) and adds new points into Li+1 up to the moment
when the size Li+1 riches bi. This means that once bi − (mi + �√bi�)
are added to Li+1 by this subroutine, the next round is started.

However, while |Li+1| < bi the Spoiler consider consecutive point x ∈
Ki+1, adds it to Ai+1 and adds to Li+1 a new point that covers only b
(an attack on b) for each b ∈ U(x). Remember that since the guard

|Li+1| ≤ bi (14)

is active, it may happen that for some x ∈ Ki+1 only a part of points
from U(x) are covered this way. Note also that, if at least one point
from U(x) is attacked then x ∈ Ai+1.

...

...

base B

S - single-colorediM - multi-coloredi

...

...

...

...

...

not attacked

i

K i+1

• On the other hand it may happen as well that all of the points from⋃ {U(x) : x ∈ Ki+1} are covered and still we have |Li+1| < bi. In this
case we know that exactly |Li+1|−�√bi� points from Bi were attacked.
In particular |Li+1| − �√bi� − mi points from Si are attacked so that

si − |Li+1| +
⌊√

bi

⌋
+ mi = bi +

⌊√
bi

⌋
− |Li+1| ≥ bi − |Li+1|

8

gives that there remains at least bi − |Li+1| unattacked single-colored
points (from Si). Now the Spoiler attacks this number of points and
increases the size of the level Li+1 to the required size bi.

After completing i-th round we put

Bi+1 := Li+1 − Ki+1

so that the next base consists of those points from Li+1 that cover exactly
one point of the base Bi. Consequently we have bi+1 = bi −�√bi� as claimed
in (5). We iterate this construction as long as

bi ≤ ci. (15)

Now, knowing the construction of the poset we can get back and prove
(3). Before showing it let us introduce the following notation, where i ≥ 0:

• Ni := {x ∈ Si : x is not attacked},
i.e., Ni consists of non-attacked points from Bi. It should be obvious
from what has been already said that

|Ni| =
⌊√

bi

⌋
. (16)

• S ′
i := {x ∈ Si : c(x) ⊆ c(Ki+1)},

but we check the coloring before the attack at points from Si.

• A′
i+1 := {a ∈ Ki+1 : all of the points from U(a) were attacked},

We immediately have c(A′
i+1) ∩ c(Ni) = ∅. From the definition of set

S ′
i we get

c(A′
i+1) ∩ c(Ni ∩ S ′

i) = ∅ (17)

We are interested in those points that froze colors for further use. In our
strategy the Spoiler does not add any point above Ki+1 and each point from
Ki+1 has to keep at least one color forever. Therefore at least |Ki+1| = �√bi�
are frozen for further use.

However we can do much better, by showing that each point in Ni ∪
A′

i+1 freezes one color. Since both Ni and A′
i+1 are antichains, and c(Ni) ∩

c(A′
i+1) = ∅, we get that at least

|Ni| +
∣∣A′

i+1

∣∣
colors are frozen.

9

We will show that

∣∣A′
i+1

∣∣ ≥ ⌊√
bi

⌋
− 2bi

2bi − ci

(18)

After we are done with (18) we can argue that at least

|Ni| +
∣∣A′

i+1

∣∣ ≥ ⌊√
bi

⌋
+

⌊√
bi

⌋
− 2bi

2bi − ci
= 2

⌊√
bi

⌋
− 2bi

2bi − ci

colors are frozen. Thus (2) immediately yields (3) as required. Thus, all we
need for (3) is to prove (18).

Before proving this inequality recall that on his way to construct Li+1

the Spoiler after attacking Mi and creating Ki+1 turns to attack some points
from Si. Exploring Si, first points from S ′

i are attacked and he gets to Si−S ′
i

only if
|S ′

i| < |Si| − �
√

bi�. (19)

Now we split the proof of (18) into two cases.
The first one is when (19) holds.

...

...

K

base B

S - single-colorediM - multi-coloredi

...

...

...

S - S'ii S' i

......

...

N i

 i

 i+1

In this case all points from S ′
i were attacked so that S ′

i∩Ni = ∅. Equation
(17) immediately gives A′

i+1 = Ki+1, making (18) to be trivial.
Our second case is much more laborious. In this setting we have

|Si| − |S ′
i| ≤

⌊√
bi

⌋
.

10

...

...

K

base B

S - single-colorediM - multi-coloredi

...

...

...

S' i

......

N

i+1

i

S - S' i i

i

In this case we know that the construction of Li+1 is terminated by the
guard (14), so we immediately get

Si − Ni ⊆ U(Ai+1). (20)

Now we can write

|c(Ai+1) ∩ c(S ′
i)| = |U(Ai+1)| ≥ |Si| − |Ni| = |Si| −

⌊√
bi

⌋
, (21)

where again c denotes the coloring before the attack at the point from Si.
First equation is from (13) and the definition of S ′

i. The next inequality we
get from (20) and the fact that Ni ⊆ Si. The last one we have from (16).

Applying Lemma 10 with elements of Ki+1 serving as boxes, the colors
from c(S ′

i) serving as balls that are distributed into the boxes we get

|c(Ai+1) ∩ c(S ′
i)| ≤ |Ai+1| |S ′

i|⌊√
bi

⌋ (22)

Using (10),(21),(22) and the fact that |S ′
i| ≤ |Si| we have

|Ai+1| ≥ |c(Ai+1) ∩ c(S ′
i)| ·

⌊√
bi

⌋
|S ′

i|

≥
⌊√

bi

⌋ · (|Si| −
⌊√

bi

⌋
)

|Si|
≥

⌊√
bi

⌋
− bi

|Si|
≥

⌊√
bi

⌋
− bi

2bi − ci

11

As we said the guard terminates the construction of Li+1 in this case. Let
a ∈ Ai+1 will be the point last added then from the definition A′

i+1 we know
that for b ∈ Ai+1, b �= a all points in U(b) are attacked, so we get

either
∣∣A′

i+1

∣∣ = |Ai+1| or
∣∣A′

i+1

∣∣ = |Ai+1| − 1.

We immediately get

∣∣A′
i+1

∣∣ ≥ |Ai+1| − 1 ≥
⌊√

bi

⌋
− bi

2bi − ci
− 1 ≥

⌊√
bi

⌋
− 2bi

2bi − ci
, (23)

where the last inequality immediately follows from (15). This finishes the
proof of (18) and therefore (3) is shown as well.

To see that the width of the created poset never exceeds d we induct on
q to show that

width(

q⋃
i=0

Li) ≤ d.

This is obvious for L0, since width(L0) = d. Now for an antichain A in⋃q+1
i=0 Li decompose the set

A+ := A ∩ Lq+1

into two parts:
A+ ∩ Kq+1, A+ − Kq+1

Since |Ni| =
⌊√

bi

⌋
= |Ki+1|, we can choose an embedding g : A+ ∩Ki+1 −→

Ni. Moreover we can extend g to f : A+ −→ Lq by putting f(x) to be
the unique subcover of x, whenever x ∈ A+ − Kq+1. Since f(x) ≤ x for all
x ∈ A+, the sets

f(A+), A ∩
q⋃

i=0

Li

are disjoint and their join (denoted by A′) can be easily seen to be an
antichain contained in

⋃q
i=0 Li. We can finish the proof by noticing that

|A| = |A′| ≤ d, where the last inequality is nothing else but the induction
hypothesis.

Finally we have to show that eventually the Spoiler would force the Al-
gorithm to use strictly more then c colors. This can be enforced on a level
Lq on which the Algorithm is left with cq colors to color an antichain Bq of

12

size bq > cq. To see that such a level exists first note that directly from the
definition (5) we get that for some p

b0 > b1 > b2 > ... > bp > bp+1 = 0.

Thus there is q with
0 �= bq < 2

√
b0 (24)

Now our Claim and (24) yield

2bq − cq ≥ ε/2 · bq + 2
√

b0 ≥ 2
√

b0 > bq

so that the required inequality bq > cq holds on q-th level. �

First of all I want to thank Bartlomiej Bosek who is in fact the co-author
of this paper. Finally I want to thank our supervisor - prof. Pawel Idziak
for motivation as well as Grzegorz Matecki and Kamil Kloch for the help
obtained from them.

References

[1] S.Felsner On-line Chain Partitions of Orders. Theoretical Computer Sci-
ence 175:283-292, 1997

[2] H.A.Kierstead, G.F.McNulty and W.T.Trotter. A theory of recursive
dimension for ordered sets. Order, 1:67-82, 1984.

[3] K.Kloch, Wyniar off- i on-line czȩściowych porzadków, Master Thesis,
Computer Science Institute, Jagiellonian University, 2003.

13

