Hanani–Tutte for radial drawings

Radoslav Fulek, IST Austria

(Marcus Schaefer, De Paul Chicago and Michael Pelsmajer, IIT Chicago)

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000): A graph is *embeddable on an* **orientable** *surface* if it can be drawn in the surface such that any two edges cross an **even** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000)+Pelsmajer, Schaefer, and Štefankovič (2007): A graph is embeddable on a surface if it can be drawn in the surface such that any two edges cross an **even** number of times. Moreover, in the embedding the order of the end pieces of the edges at the vertices is the same.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000)+Pelsmajer, Schaefer, and Štefankovič (2007): A graph is embeddable on a surface if it can be drawn in the surface such that any two edges cross an **even** number of times. Moreover, in the embedding the order of the end pieces of the edges at the vertices is the same.

Conjecture: A graph is *embeddable on a surface* if it can be drawn in the surface such that any two **non-adjacent** edges cross an **even** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Cairns & Nikolayevsky (2000)+Pelsmajer, Schaefer, and Štefankovič (2007): A graph is embeddable on a surface if it can be drawn in the surface such that any two edges cross an **even** number of times. Moreover, in the embedding the order of the end pieces of the edges at the vertices is the same.

Conjecture: A graph is *embeddable on a surface* if it can be drawn in the surface such that any two **non-adjacent** edges cross an **even** number of times.

Verified for the projective plane by *Pelsmajer et al.* (2009), and, ... hopefully, torus.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

The algorithm reduces the problem to solving a sparse linear system over $\mathbb{Z}/2\mathbb{Z}$ with $O(|V|^2)$ variables and $O(|V|^2)$ equations solvable in $\tilde{O}(|V|^4)$, Wiedemann (1986).

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Shapiro (1957), Wu (1970s): Given a graph G = (V, E). We can test in a polynomial time whether G can be drawn so that **no two non-adjacent** edges of G cross an **odd** number of times.

The algorithm reduces the problem to solving a sparse linear system over $\mathbb{Z}/2\mathbb{Z}$ with $O(|V|^2)$ variables and $O(|V|^2)$ equations solvable in $\tilde{O}(|V|^4)$, Wiedemann (1986).

Linear time algorithm was given by Hopcroft & Tarjan (1970)

Hanani (Chojnacki) (1934), Tutte (1970): A graph is planar if it can be drawn in the plane such that any two **non-adjacent** edges cross an **even** number of times.

Weak Hanani–Tutte theorem for monotone drawings

Pach & Tóth (2004): If we can draw a graph G in the plane such that

(i) every pair of edges cross evenly; and

(ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds; x(v) is unchanged for every vertex and the order of the end pieces of the edges at the vertices is unchanged.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

The algorithm reduces the problem to 2-SAT.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

The algorithm reduces the problem to 2-SAT. Linear time algorithm was given by *Jünger & Leipert (2000)*.

F., Pelsmajer, Schaefer & Štefankovič (2011): If we can draw a graph G in the plane such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) projection x(.) of every edge to x-axis is injective then we can embed G such that (ii) still holds and x(v) is unchanged for every vertex.

F., Pelsmajer, Schaefer & Štefankovič (2011): Given a graph G = (V, E) whose vertices are totally ordered we can test in $O(|V|^2)$ time if there exists an embedding of G in which x(v)'s, $v \in V$, respect the given order and x(e)'s, $e \in E$, are injective

The algorithm reduces the problem to 2-SAT. *Chimani et al. (2013)* Our algorithm performs well in practice.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. I(.) is the projection to I.

Given a graph G = (V, E) whose vertices are totally ordered a radial drawing of G is a drawing on the cylinder C such that (i) Values $I(v), v \in V$, respect the given order; and (ii) $I(e), e \in E$, are injective.

F., Pelsmajer & Schaefer (2016+): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

Prove the theorem without the word **non-adjacent** and maintaining the order of the end pieces of the edges at the vertices. (*the weak variant*)

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

Prove the theorem without the word **non-adjacent** and maintaining the order of the end pieces of the edges at the vertices. (*the weak variant*)

Only the first vertex, last vertex and vertices participating in a \leq 2-cut are locally uncorrectable.

F., Pelsmajer & Schaefer (2016): If we can draw a graph G on C radially such that (i) every pair of **non-adjacent** edges cross evenly; and (ii) I(e) is injective for every $e \in E$ then we can embed G radially such that (ii) still holds and I(v)is unchanged for every vertex.

Prove the theorem without the word **non-adjacent** and maintaining the order of the end pieces of the edges at the vertices. (*the weak variant*)

Only the first vertex, last vertex and vertices participating in a \leq 2-cut are locally uncorrectable.

Reduce ≤ 2 -separations; *the weak variant* in the base case.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

F. (2014) A graph G = (V, E)equipped with a function $\gamma: V \to \mathbb{R}$ admits an x-bounded straight-line embedding if it admits an x-bounded drawing in which every pair of edges cross evenly.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

Conjecture. A graph G = (V, E)equipped with a function $\gamma: V \to \mathbb{R}$ admits an *x*-bounded straight-line embedding if it admits an *x*-bounded drawing in which every pair of **non-adjacent** edges cross evenly.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

Conjecture. A graph G = (V, E)equipped with a function $\gamma: V \to \mathbb{R}$ admits an *x*-bounded straight-line embedding if it admits an *x*-bounded drawing in which every pair of **non-adjacent** edges cross evenly.

F. (16+) The conjecture verified for graphs in which every connected component is either a tree or a generalized Θ -graphs.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma : V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

G is planar and \mathcal{D} is the isotopy class of an embedding of G. $\mathcal{C} = (\mathcal{D}, \mathbb{Z}_2)$ is the corresponding chain complex: 2-dim. chains are generated by the inner faces of \mathcal{D} , 1-dim. chains by E, 0-dim. by V.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

G is planar and \mathcal{D} is the isotopy class of an embedding of G. $\mathcal{C} = (\mathcal{D}, \mathbb{Z}_2)$ is the corresponding chain complex: 2-dim. chains are generated by the inner faces of \mathcal{D} , 1-dim. chains by E, 0-dim. by V.

Let $i_{\mathcal{D}}(C_1, C_2)$ denote the algebraic intersection number of the supports, which are balls, of pure chains C_1 and C_2 in \mathcal{D} such that $dim(C_1) + dim(C_2) = 2$.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma : V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

G is planar and \mathcal{D} is the isotopy class of an embedding of G. $\mathcal{C} = (\mathcal{D}, \mathbb{Z}_2)$ is the corresponding chain complex: 2-dim. chains are generated by the inner faces of \mathcal{D} , 1-dim. chains by E, 0-dim. by V.

Let $i_{\mathcal{D}}(C_1, C_2)$ denote the algebraic intersection number of the supports, which are balls, of pure chains C_1 and C_2 in \mathcal{D} such that $dim(C_1) + dim(C_2) = 2$.

F. (2016) \mathcal{D} contains a straight-line x-bounded embedding iff $i_{\mathcal{D}}(C_1, C_2) = 0$ whenever $\gamma(C_1) \cap \gamma(\partial C_2) = \emptyset$ and $\gamma(\partial C_1) \cap \gamma(C_2) = \emptyset$, where $\gamma(.)$ is extended linearly to edges.

A drawing in the plane of a graph G = (V, E) equipped with a graph homomorphism $\gamma : V \to H$, where H = (V', E') is a plane graph, is (H, ϵ) -**bounded** if $\epsilon > \operatorname{dist}_{\mathcal{F}}(e, \gamma(e))$, for every $e \in E$.

G is planar and \mathcal{D} is the isotopy class of an embedding of G. $\mathcal{C} = (\mathcal{D}, \mathbb{Z}_2)$ is the corresponding chain complex: 2-dim. chains are generated by the inner faces of \mathcal{D} , 1-dim. chains by E, 0-dim. by V.

Let $i_{\mathcal{D}}(C_1, C_2)$ denote the algebraic intersection number of the supports, which are balls, of chains C_1 and C_2 in \mathcal{D} such that $dim(C_1) + dim(C_2) = 2$.

Conjecture: \mathcal{D} contains a straight-line (H, ϵ) -bounded embedding for every $\epsilon > 0$, iff (i) $i_{\mathcal{D}}(C_1, C_2) = i_H(\gamma(C_1), \gamma(C_2))$ whenever $\gamma(C_1) \cap \gamma(\partial C_2) = \emptyset$ and $\gamma(\partial C_1) \cap \gamma(C_2) = \emptyset$; and (ii) every face f of \mathcal{D} admits an (H, ϵ) -bounded embedding \mathcal{E}_f such that if $f \neq f'$ then \mathcal{E}_f and $\mathcal{E}_{f'}$ do not "cover" the same face of H, i.e., winding numbers of faces of Gw.r.t. to H are consistent.

A drawing in the plane of a graph G = (V, E) equipped with a function $\gamma: V \to \mathbb{R}$ is *x*-bounded if (i) x(u) < x(v) whenever $\gamma(u) < \gamma(v)$; and (ii) $\gamma(u) \leq \gamma(w) \leq \gamma(v)$, where $uv \in E$ and $\gamma(u) \leq \gamma(v)$, whenever $x(w) \in x(uv)$.

Conjecture. A graph G = (V, E)equipped with a function $\gamma: V \to \mathbb{R}$ admits an *x*-bounded straight-line embedding if it admits an *x*-bounded drawing in which every pair of **non-adjacent** edges cross evenly.

Does at least the **weak** variant of the radial version of the conjecture hold?

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \overrightarrow{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder \mathcal{C} such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \overrightarrow{E}$, are injective and directed clockwise.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \vec{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder \mathcal{C} such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \vec{E}$, are injective and directed clockwise.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \overrightarrow{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder \mathcal{C} such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \overrightarrow{E}$, are injective and directed clockwise.

The cylinder C is $I \times \mathbb{S}^1$, where I is unit interval and \mathbb{S}^1 is a unit circle. $\mathbb{S}^1(.)$ is the projection to \mathbb{S}^1 .

Given a graph $G = (V, \overrightarrow{E})$, whose vertices are cylically ordered, a cyclic drawing of G is a drawing on the cylinder \mathcal{C} such that (i) Values $\mathbb{S}^1(v)$, $v \in V$, respect the given order; and (ii) $\mathbb{S}^1(e)$, $e \in \overrightarrow{E}$, are injective and directed clockwise.

