Stefan Felsner & Piotr Micek

Homework 9

Due to December 10, 23:59.

Warm-up. Just think about them. Do not submit.

Exercise. Suppose that we are given a 3-colorable graph G but we do not know a witnessing coloring. Show how to color G with $\mathcal{O}(\sqrt{n})$ in polynomial time.

Exercise. A *circle order* is a containment order of discs in the plane. Show that standard examples are circle orders.

Please submit solutions of the following. To be graded.

Exercise 1. Construct a family of arbitrarily large triangle-free graphs with the chromatic number in $\Omega(n^{1/3})$ where n is the number of vertices. Follow the description.

Consider a finite projective plane of order q. So with $q^2 + q + 1$ points and $q^2 + q + 1$ lines. (You can browse the web for additional information on this object.) Fix an arbitrary ordering \prec on points of the plane and an arbitrary ordering \prec on lines of the plane Consider a graph G_q with vertices being all the point-line incidences. Two vertices (p_1, ℓ_1) and (p_2, ℓ_2) are adjacent in G_q if $p_1 \prec p_2$, $\ell_1 \prec \ell_2$ and (p_1, ℓ_2) is a point-line incidence (so is a vertex of G_q). Prove that

- (i) G_q is triangle-free;
- (ii) if I is an independent set in G_q then reading I as the set of edges in the bipartite graph of point-line incidences, we have that I is acyclic.

Conclude the bound using a standard inequality $\chi \ge \frac{n}{\alpha}$ where α is the size of the largest independent set.

Figure 1: Two adjacent point-line incidences in G_q . The order of points and lines is depicted with two horizontal lines.

Exercise 2. Prove that *d*-dimensional posets are containment orders of simple polygons with *d*-corners. Can you make the polygons convex?

Stefan Felsner & Piotr Micek

Exercise 3. Let P be a poset and let \mathcal{R} be its realizer. When we fix an ordering on linear extensions in \mathcal{R} we say that $\mathcal{R} = (L_1, \ldots, L_k)$ is an ordered realizer. We say that an (incomparable) pair (x, y) of elements in P flip at coordinate i $(1 \leq i < k)$ if (x < y) in L_i and y < x in L_{i+1}) or (y < x in L_i and x < y in L_{i+1}). The crossing number of an ordered realizer is the maximum over all pairs of elements of P of the number of times the pair flips. The crossing number of a poset is the minimum crossing number of its realizer. Clearly, d-dimensional orders have crossing number of at most d-1. Show that this bound is tight.

Exercise 4. Show that the class of disjointness graphs of families of grounded *x*-monotone curves is χ -bounded. *Hint or just comment*: $\chi \leq {\binom{\omega+1}{2}}$.

Exercise 5. Show that for every integer $k \ge 3$, every 3-dimensional order is a containment order of regular k-gons. (It is a deep result that there is a 3-dimensional order that is not a circle order.)

Exercise 6. Read and digest [arXiv] a short argument that shift graphs are disjointnesss graphs of 1-intersecting curves in the plane.

Exercise 7. Suppose that a graph G is a disjointness graph of curves spanned in a cylinder Show that G is a weakly transitive orientation. (Consult Lecture 18.)