

Linear extensions, dimension, and Boolean lattices

Exercise 1. Prove that the following conditions are equivalent:

- (i) G is a comparability graph of a poset of dimension at most 2;
- (ii) G is a containment graph of intervals on a line;
- (iii) G is a permutation graph;
- (iv) G and its complement are both comparability graphs.

Exercise 2. Let $\dim^*(P)$ be the least integer d such that the elements of G can be embedded into \mathbb{R}^n in such a way that for every x, y in P we have $x \leq y$ in P if and only if the point of x is less or equal the point of y in the product order on \mathbb{R}^n . Prove that $\dim(P) = \dim^*(P)$.

Exercise 3. Let $P = (X, \leq)$ be a poset. For a linear extension L of P, let s(L) be a string over X with symbols aligned as elements in L. Prove that the set

 $\{s \mid s \text{ is a prefix of } s(L) \text{ for some linear extension } L \text{ of } P\}$

is an antimatroid over X.

Exercise 4. Let P be a poset and x be an element of P. Let L be a linear extension of P - x. Show that one can always extend L to L^+ introducing x so that L^+ is a linear extension of P.

Exercise 5. Let P and Q be the posets and let $\dim(P) = d$. Show that

- (i) $\dim(P \setminus \{x\}) \in \{d-1, d\}$ for every $x \in P$,
- (ii) dim $(P \setminus \{x, y\}) \in \{d 1, d\}$ for every $x \in \min(P), y \in \max(P), x || y$,
- (iii) $\dim(P+Q) \leq \max(\dim(P), \dim(Q), 2),$
- (iv) $\dim(P \times Q) \leq \dim(P) + \dim(Q)$.

Exercise 6. Let P be a poset and C be a chain in P. Prove that

$$\dim(P) \leqslant \dim(P - C) + 2.$$

Exercise 7. Let *M* be a subset of maximal elements of a poset *P*. Let width $(P \setminus M) \leq w$. Show that

$$\dim(P) \leqslant w + 1.$$

Exercise 8. A poset is 3-*irreducible* if it has dimension 3 and after removing any element the dimension drops to 2. There is a complete list of 3-irreducible posets (it includes some infinite families). Below we present some posets from the list. Prove that the dimension of posets below is at least 3.

(i) The crown C_n of order n is a poset on 2n elements $x_1, \ldots, x_n, y_1, \ldots, y_n$ with $x_i < y_i$ and $x_i < y_{i+1}$ for $i \in \{1, \ldots, n\}$ (cyclically) and no other strict comparabilities. See Figure 1.

Figure 1: The crown of order 5.

Figure 2: Some sporadic examples.

Figure 3: The family of posets $\{Q_n\}_{n\geq 0}$.

- (ii) See Figure 2 for some sporadic examples: the chevron, the spider, and one more.
- (iii) See Figure 3.

Exercise 9. Consider a symmetric chain decomposition C on the Boolean lattice \mathcal{B}_n . How many chains of size k are in C for $1 \leq k \leq n+1$?

Exercise 10. Show that, if A_1, \ldots, A_m are distinct k-subsets of an n-set and $k \leq s \leq n-k$, then there exist distinct s-subsets B_1, \ldots, B_m such that $A_i \cap B_i = \emptyset$ for each $i = 1, \ldots, m$.