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Boxicity

d-box: the cartesian product of d intervals [x, y1] X ... X [xg, vg] of R

Definition (Roberts 1969))

The boxicity of a graph G, denoted by box(G), is the smallest d such that G
is the intersection graph of some d-boxes.

The boxicity of a graph

=(V, ) is the smallest k for which there exist k
interval graphs G; = (V, ) 1<

< k, such that E = E; N ...N Ey.
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Subdivided K,

boxicity ©(log log n)
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,_l Observation !

If G is a graph and P is its adjacency poset, then dim(P) > x(G).

.

’_(Observation (E., Joret 2013))
If G is a graph and P is its adjacency poset, then dim(P) < 2 box(G)+x(G)+4.

.
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Separation dimension of G = (V/, E) (Basavaraju, Chandran, Golumbic, Mathew,
and Rajendraprasad 2014):

the minimum d such that there is a mapping V — R? such that for any two
non-incident edges uv, xy € E, some axis-parallel hyperplane separates {u, v}

from {x, y}.

Observation (BCGMR 2014))
The separation dimension of G is the boxicity of the line graph of G. ]

Theorem (Alon+BCMR 2015)]

Any graph of maximum degree A has separation dimension at most A -29'g" 4 ]

A fractional version was recently introduced (Loeb & West 2016) and (Alon
2016). It is always at most 3.
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@ Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
@ Planar graphs have boxicity at most 3 (Thomassen 1986).
@ Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).

o Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan
2007).

Graphs with maximum degree A have boxicity O(A log? A) and some have
boxicity Q(Alog A) (Adiga, Bhowmick, Chandran 2011).

f_(Theorem (E. 2015))

Graphs with Euler genus g have boxicity O(,/g log g), and some have boxicity
Q(vglog g).

.

f_[Theorem (E. 2015))

Graphs with Euler genus g without non-contractible cycles of length at most
40 - 28 have boxicity at most 5.

.
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A proper coloring is acyclic if any two color classes induce a forest.

Observation
If a graph G has an acyclic coloring with k colors, then box(G) < k(k — 1). ]

vertices
colored j or j  the rest

—
|

k(k — 1) supergraphs of boxicity 1 (=interval graphs),

containing every non-edge of G
= box(G) < k(k — 1)
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Theorem (Kawarabayashi, Thomassen 2012))

If a graph G has Euler genus g, then there is a set A of O(g) vertices such
that G — A has an acyclic coloring with 7 colors.

acyclic col. with 7 colors O(g) vertices

@0@?@

box < 42 box = O(y/glogg) ?
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+ We may assume that all orange O(g) vertices

vertices have distinct blue neighborhoods
+ stable set instead of clique

= the graph has O(g*) vertices and is O(,/g)-degenerate

If a graph G with n vertices is k-degenerate, then box(G) = O(k log n).
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Theorem (Adiga, Bhowmick, Chandran, 2011))
box(G,) = Q(n) (consequence of Erdds, Kierstead, Trotter, 1991)

It follows that box(G,) = Q(\/glog g).
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4 the neighbors of C
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Theorem (E. 2015))

For any proper minor-closed class F, there is an integer g = g(F) such that
any graph of F of girth at least g has boxicity at most 3.

Theorem (Galluccio Goddyn Hell. 2001))

For any proper minor-closed class F, there is an integer g = g(F) such that
any graph of F of girth at least g has a vertex of degree at most one or a path
with 5 internal vertices of degree 2.

Theorem (E. 2015))

There is a constant ¢ such that any graph of Euler genus g and girth at least
c log g has boxicity at most 3.




OPEN PROBLEMS

@ What is the boxicity of K;-minor-free graphs? (somewhere between

Q(t\/logt) and t*(log t)?)



OPEN PROBLEMS

@ What is the boxicity of K;-minor-free graphs? (somewhere between
Q(ty/log t) and t*(log t)?)

o What is the boxicity of toroidal graphs? (somewhere between 4 and 6)



OPEN PROBLEMS

@ What is the boxicity of K;-minor-free graphs? (somewhere between
Q(ty/log t) and t*(log t)?)
o What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

@ Is it true that locally planar graphs have boxicity at most 37



OPEN PROBLEMS

@ What is the boxicity of K;-minor-free graphs? (somewhere between
Q(ty/log t) and t*(log t)?)

o What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

@ Is it true that locally planar graphs have boxicity at most 37

@ Is it true that if G has Euler genus g, then O(g) vertices can be removed
from G so that the resulting graph has boxicity at most 37 (it is true with 5
instead of 3)



OPEN PROBLEMS

@ What is the boxicity of K;-minor-free graphs? (somewhere between
Q(ty/log t) and t*(log t)?)

o What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

@ Is it true that locally planar graphs have boxicity at most 37

@ Is it true that if G has Euler genus g, then O(g) vertices can be removed
from G so that the resulting graph has boxicity at most 37 (it is true with 5
instead of 3)

Most of the questions remain interesting for the dimension of the adjacency poset
and the separation dimension of graphs, instead of their boxicity.
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