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When is a graph sparse?



When is a graph sparse?
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Theorem [Robertson, Seymour]
Let C be a proper minor-closed class of graphs. Then there exist
H1, . . . ,Hk such that

C = {G : Hi $ G for all i ∈ [k]}.



Proper minor-closed graph classes

Examples:

• planar graphs
• bounded genus graphs
• graphs of bounded path-width
• graphs of bounded tree-width

Sparse?

• linear many edges
• even their minors have linear many edges!



ShallowMinors

contract

branch sets have radius ≤ 1 1-shallow minor of G

G H

C class of graphs
C ∇ r set of r-shallow minors of graphs in C

A class C has bounded expansion if there exists a function f s.t.
graphs in C ∇ r have density ≤ f (r).



Nowhere dense classes

A class C is nowhere dense if for all r ≥ 0, graphs of C ∇ r have
edge density O(nε), for each ε > 0.

A class C is nowhere dense if for all r ≥ 0,

C ∇ r , set of all graphs.

A class C is somewhere dense if it is not nowhere dense.
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Bounded expansion - characterizations

• r-shallow topological minors
• transitive fraternal augmentations
• generalized coloring numbers
• low-treedepth colorings
• neighborhood complexity
• neighborhood covers
• splitter game
• dimension?



Weak Coloring Numbers
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u is weakly r-reachable from v

wcolr(G) := min
π

max
v
|WReachr[v, π]| .

Theorem [Zhu ’09]
A class C has bounded expansion iff there exists a function f
such that wcolr(G) ≤ f (r) for all r ≥ 0 and G ∈ C.
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Theorem [Zhu ’09]
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Weak Coloring Numbers

v
π

weakly 3-reachable from v

wcolr(G) := min
π

max
v
|WReachr[v, π]| .

Theorem [Zhu ’09]
A class C is nowhere dense iff for each integer r ≥ 0 and ε > 0,
we have wcolr(G) = O(nε) for every G ∈ C.



Algorithmic Aspects



Dominating Set Problem

Input: Graph G, number k

Problem: Are there k ver-
tices dominating all vertices
of G?

NP-complete in general. Is it fixed-parameter tractable? So is
there a function f and an algorithm solving the problem in time

f (k) · nO(1) ?

Dominating Set Problem is W[2]-complete
→ unlikely that there exists an FPT for it



NP-complete Graph Problems

• Dominating Set Problem
• k-Colorability
• CLIQUE, INDEPENDET SET
• Steiner tree problem
• k-disjoint paths

General question:
What are the largest graph classes on which certain types of
problems become tractable?



Graph Properties

Goal: Read tractibility of a problem directly off its
mathematical description.

Properties definable in First-Order Logic (FO):
• k-clique, k-independet set
• subgraph containment (for some fixed graph)
• k-dominating set

Properties definable in Monadic Second-Order Logic (MSO):
• connectivity
• hamiltonicity
• k-colorability



Meta-Theorems

[K 09] [DKT 11]
FO in f (k) · n1+ε

[GKS 13]

bounded expansion

nowhere dense
somewhere dense

[DKT 11]

locally bd. treewidth

locally excl. minor

[DGK 07]

[FG 01]excluded minor

bounded genus

planar bd. treewidth

MSO FPT
[Courcelle 90]

bd. degree

[Seese 96]

[FG 01]

[FFG 01]

[FG 01]

FO is W[1]-hard

FO in f (k) · n



Dimension



Dimension

The dimension of a poset P is the dimension of P.

So the dimension is just the dimension.
More precisely, the dimension of P is the least d such that
dim(P) ≤ d.
Dually, the dimension of P is the largest d such that dim(P) ≥ d.
So it is not the boolean dimension or the interval-dimension, it just
the dimension.
That is to say, the Dushnik-Miller dimension and not the
Ore-dimension (but almost).
In other words, dimension is “Graph Coloring for Grown-ups”.
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Dimension

The dimension of a poset P is the least d such that P is
isomorphic to a subposet of (Rd,≤d).

↪→

R3



Cover Graphs
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Width and Dimension

width(P) maximum size of an antichain in P
height(P) maximum size of a chain in P

Theorem [Dilworth ’50]

dim(P) ≤ width(P).

“Large-dimensional posets are wide”

but not necessarily tall:

1 2 3 4 5

1 2 3 4 5

S5

dim(Sn) = n
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General Question

“Do large-dimensional posets with sparse cover
graphs have to be tall?”



Answer: Yes and No

Theorem [Streib, Trotter, 2014]
The dimension of posets with planar cover graphs is bounded
in their height.

Incidence Posets of graphs:

K5 PK5

Theorem [Dushnik, Miller, ’41]

dim(PKn) ≥ log log n.



Answer: Yes and No

Theorem [Streib, Trotter, 2014]
The dimension of posets with planar cover graphs is bounded
in their height.

Incidence Posets of graphs:

cover(PK5 ) PK5

Theorem [Dushnik, Miller, ’41]

dim(PKn) ≥ log log n.



Cover Graphs and Dimension
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Weak Coloring Numbers and Dimension

Theorem [Joret, Micek, W., 2016+]
Let P be a poset of height at most h with a cover graph G such
that wcol3h(G) ≤ c. Then

dim(P) ≤ 6c.

Graph property wcolr(G)

bounded genus O(r3) [vH-OdM-Qu-R-S, 2016+]

treewidth t O(rt) [GKRSS, 2016]

no Kn minor O(rn−1) [vH-OdM-Qu-R-S, 2016+]

no Kn top. minor 2O(r log r) [KPRS, 2016]

bd. expansion f (r) [Zhu, 2009]



Weak Coloring Numbers and Dimension

Theorem [Joret, Micek, W., 2016+]
Let P be a poset of height at most h with a cover graph G such
that wcol3h(G) ≤ c. Then

dim(P) ≤ 6c.

Graph property wcolr(G) dim(P)

bounded genus O(r3) 2O(h3)

treewidth t O(rt) 2O(ht)

no Kn minor O(rn−1) 2O(hn−1)

no Kn top. minor 2O(r log r) 22O(h log h)

bd. expansion f (r) g(h)



Current best bounds
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Nowhere dense cover graphs

Theorem [Joret, Micek, W., 2016]
There are height-2 posets with cover graphs in a nowhere
dense class C such that their dimension is unbounded.

Adjacency posets:

G APG

Lemma: χ(G) ≤ dim(APG).

C = {graphs G with ∆(G) ≤ girth(G)}.
• nowhere dense , unbounded χ
• =⇒ dim(APG) is unbounded for G ∈ C
• G ∈ C =⇒ cover graph of APG in C



Nowhere dense cover graphs

Theorem [Joret, Micek, W., 2016]
There are height-2 posets with cover graphs in a nowhere
dense class C such that their dimension is unbounded.

Adjacency posets:

G APG

Lemma: χ(G) ≤ dim(APG).

C = {graphs G with ∆(G) ≤ girth(G)}.
• has locally bounded treewidth, unbounded χ
• =⇒ dim(APG) is unbounded for G ∈ C
• G ∈ C =⇒ cover graph of APG in C



Open Problems

Conjecture
A monotone class C has bounded expansion iff
for each h ≥ 1, posets of height at most h with cover graphs in C
have bounded dimension.

Problem
Let P be a class of height-2 posets with unbounded average
degree. Is the dimension of subposets of posets in P necessarily
unbounded?



Open Problems

Conjecture
Posets P of bounded height with cover graphs in a nowhere
dense class have dimension

dim(P) ≤ O(nε),

for each ε > 0.

Fact:
For every monotone somewhere dense class C, there exists h
such that there are posets P of height at most h and

dim(P) = Ω(n1/2).



Open Problems

Problem
Large-dimensional posets with sparse cover graphs have to be
tall.
What else?

Theorem [Howard, Streib, Trotter, Walczak, Wang, 2016+]
Large-dimensional posets with planar cover graphs have to
contain a large k + k.

Thank You
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