Structural Graph Theory and Dimension

Order and Geometry Gułtowy 2016

Sparsity Theory for Graphs

Algorithms and Combinatorics 28

Jaroslav Nešetřil Patrice Ossona de Mendez

Sparsity

Graphs, Structures, and Algorithms

When is a graph sparse?

When is a graph sparse?

GRAPH MINORS

Theorem [Robertson, Seymour] Let *C* be a proper minor-closed class of graphs. Then there exist H_1, \ldots, H_k such that

$$C = \{G : H_i \not\leq G \text{ for all } i \in [k]\}.$$

Examples:

- planar graphs
- bounded genus graphs
- graphs of bounded path-width
- graphs of bounded tree-width

Sparse?

- linear many edges
- even their minors have linear many edges!

Shallow Minors

branch sets have radius ≤ 1

1-shallow minor of G

- *C* class of graphs
- $C \nabla r$ set of *r*-shallow minors of graphs in *C*

A class *C* has *bounded expansion* if there exists a function *f* s.t. graphs in $C \nabla r$ have density $\leq f(r)$.

A class *C* is *nowhere dense* if for all $r \ge 0$, graphs of $C \nabla r$ have edge density $O(n^{\epsilon})$, for each $\epsilon > 0$.

A class *C* is *nowhere dense* if for all $r \ge 0$,

 $C \nabla r \neq$ set of all graphs.

A class *C* is *somewhere dense* if it is not nowhere dense.

Hierarchy

- *r*-shallow topological minors
- transitive fraternal augmentations
- generalized coloring numbers
- low-treedepth colorings
- neighborhood complexity
- neighborhood covers
- splitter game
- dimension?

u is weakly r-reachable from v

• weakly 0-reachable from v

• weakly 1-reachable from v

• weakly 2-reachable from v

• weakly 3-reachable from v

WEAK COLORING NUMBERS

weakly 3-reachable from v

$$\operatorname{wcol}_r(G) := \min_{\pi} \max_{v} |\operatorname{WReach}_r[v,\pi]|.$$

Theorem [Zhu '09] A class *C* has bounded expansion iff there exists a function *f* such that $\operatorname{wcol}_r(G) \leq f(r)$ for all $r \geq 0$ and $G \in C$.

WEAK COLORING NUMBERS

weakly 3-reachable from v

$$\operatorname{wcol}_r(G) := \min_{\pi} \max_{v} |\operatorname{WReach}_r[v, \pi]|.$$

Theorem [Zhu '09] A class *C* is nowhere dense iff for each integer $r \ge 0$ and $\epsilon > 0$, we have $\operatorname{wcol}_r(G) = O(n^{\epsilon})$ for every $G \in C$. Algorithmic Aspects

Dominating Set Problem

Input: Graph *G*, number *k*

Problem: Are there *k* vertices dominating all vertices of *G*?

NP-complete in general. Is it *fixed-parameter tractable*? So is there a function f and an algorithm solving the problem in time

 $f(k) \cdot n^{O(1)}$?

Dominating Set Problem is W[2]-complete \rightarrow unlikely that there exists an FPT for it

NP-COMPLETE GRAPH PROBLEMS

- Dominating Set Problem
- k-Colorability
- CLIQUE, INDEPENDET SET
- Steiner tree problem
- *k*-disjoint paths

General question:

What are the *largest graph classes* on which certain *types of problems* become tractable?

Goal: Read tractibility of a problem directly off its mathematical description.

Properties definable in First-Order Logic (FO):

- *k*-clique, *k*-independet set
- subgraph containment (for some fixed graph)
- *k*-dominating set

Properties definable in Monadic Second-Order Logic (MSO):

- connectivity
- hamiltonicity
- k-colorability

DIMENSION

The *dimension* of a poset **P** is the dimension of **P**.

The *dimension* of a poset **P** is the dimension of **P**. So the dimension is just the dimension.

The *dimension* of a poset **P** is the dimension of **P**. So the dimension is just the dimension. More precisely, the dimension of **P** is the least *d* such that $\dim(\mathbf{P}) \leq d$. The *dimension* of a poset **P** is the dimension of **P**. So the dimension is just the dimension. More precisely, the dimension of **P** is the least *d* such that $\dim(\mathbf{P}) \leq d$. Dually, the dimension of **P** is the largest *d* such that $\dim(\mathbf{P}) \geq d$. The *dimension* of a poset **P** is the dimension of **P**. So the dimension is just the dimension. More precisely, the dimension of **P** is the least *d* such that dim(**P**) $\leq d$. Dually, the dimension of **P** is the largest *d* such that dim(**P**) $\geq d$. So it is not the *boolean dimension* or the *interval-dimension*, it just the dimension. The *dimension* of a poset **P** is the dimension of **P**. So the dimension is just the dimension.

More precisely, the dimension of **P** is the least *d* such that $\dim(\mathbf{P}) \leq d$.

Dually, the dimension of **P** is the largest *d* such that $\dim(\mathbf{P}) \ge d$. So it is not the *boolean dimension* or the *interval-dimension*, it just the dimension.

That is to say, the *Dushnik-Miller dimension* and not the *Ore-dimension* (but almost).

The *dimension* of a poset **P** is the dimension of **P**. So the dimension is just the dimension.

More precisely, the dimension of **P** is the least *d* such that $\dim(\mathbf{P}) \leq d$.

Dually, the dimension of **P** is the largest *d* such that $\dim(\mathbf{P}) \ge d$. So it is not the *boolean dimension* or the *interval-dimension*, it just the dimension.

That is to say, the *Dushnik-Miller dimension* and not the *Ore-dimension* (but almost).

In other words, dimension is "Graph Coloring for Grown-ups".

The *dimension* of a poset **P** is the least *d* such that **P** is isomorphic to a subposet of (\mathbb{R}^d, \leq_d) .

Cover Graphs

WIDTH AND DIMENSION

width(P)maximum size of an antichain in Pheight(P)maximum size of a chain in P

Theorem [Dilworth '50]

 $\dim(\mathbf{P}) \leq \mathrm{width}(\mathbf{P}).$

"Large-dimensional posets are wide"

but not necessarily *tall*:

Kelly's examples

Kelly's examples

Kelly's examples

Kelly's examples

"Do large-dimensional posets with *sparse* cover graphs have to be *tall*?"

Answer: Yes and No

Theorem [Streib, Trotter, 2014] The dimension of posets with planar cover graphs is bounded in their height.

Incidence Posets of graphs:

Theorem [Dushnik, Miller, '41]

 $\dim(\mathbf{P}_{K_n}) \geq \log \log n.$

Answer: Yes and No

Theorem [Streib, Trotter, 2014] The dimension of posets with planar cover graphs is bounded in their height.

Incidence Posets of graphs:

Theorem [Dushnik, Miller, '41]

 $\dim(\mathbf{P}_{K_n}) \geq \log \log n.$

COVER GRAPHS AND DIMENSION

Weak Coloring Numbers and Dimension

Theorem [Joret, Micek, W., 2016+] Let **P** be a poset of height at most *h* with a cover graph *G* such that $\operatorname{wcol}_{3h}(G) \leq c$. Then

 $\dim(\mathbf{P}) \leq 6^c.$

Graph property	$\operatorname{wcol}_r(G)$	
bounded genus	$O(r^3)$	[vH-OdM-Qu-R-S, 2016+]
treewidth <i>t</i>	$O(r^t)$	[GKRSS, 2016]
no K_n minor	$O(r^{n-1})$	[vH-OdM-Qu-R-S, 2016+]
no K_n top. minor	$2^{O(r \log r)}$	[KPRS, 2016]
bd. expansion	f(r)	[Zhu, 2009]

Weak Coloring Numbers and Dimension

Theorem [Joret, Micek, W., 2016+] Let **P** be a poset of height at most *h* with a cover graph *G* such that $\operatorname{wcol}_{3h}(G) \leq c$. Then

 $\dim(\mathbf{P}) \leq 6^c.$

Graph property	$\operatorname{wcol}_r(G)$	dim(P)
bounded genus	$O(r^3)$	$2^{O(h^3)}$
treewidth <i>t</i>	$O(r^t)$	$2^{O(h^t)}$
no K_n minor	$O(r^{n-1})$	$2^{O(h^{n-1})}$
no K_n top. minor	$2^{O(r \log r)}$	$2^{2^{O(h \log h)}}$
bd. expansion	f(r)	g(h)

Current best bounds

Nowhere dense cover graphs

Theorem [Joret, Micek, W., 2016] There are height-2 posets with cover graphs in a **nowhere dense** class *C* such that their dimension is unbounded.

Adjacency posets:

Lemma: $\chi(G) \leq \dim(\mathbf{AP}_G)$.

- $C = \{ \text{graphs } G \text{ with } \Delta(G) \leq \text{girth}(G) \}.$
 - nowhere dense , unbounded χ
 - \implies dim(**AP**_{*G*}) is unbounded for *G* \in *C*
 - $G \in C \implies$ cover graph of \mathbf{AP}_G in C

Nowhere dense cover graphs

Theorem [Joret, Micek, W., 2016] There are height-2 posets with cover graphs in a **nowhere dense** class *C* such that their dimension is unbounded.

Adjacency posets:

Lemma: $\chi(G) \leq \dim(\mathbf{AP}_G)$.

 $C = \{ \text{graphs } G \text{ with } \Delta(G) \leq \text{girth}(G) \}.$

- has **locally bounded treewidth**, unbounded χ
- \implies dim(**AP**_{*G*}) is unbounded for *G* \in *C*
- $G \in C \implies$ cover graph of \mathbf{AP}_G in C

Conjecture

A monotone class *C* has bounded expansion iff for each $h \ge 1$, posets of height at most *h* with cover graphs in *C* have bounded dimension.

Problem

Let \mathcal{P} be a class of height-2 posets with unbounded average degree. Is the dimension of subposets of posets in \mathcal{P} necessarily unbounded?

Conjecture

Posets **P** of bounded height with cover graphs in a nowhere dense class have dimension

$\dim(\mathbf{P}) \leq O(n^{\epsilon}),$

for each $\epsilon > 0$.

Fact:

For every monotone somewhere dense class C, there exists h such that there are posets **P** of height at most h and

 $\dim(\mathbf{P}) = \Omega(n^{1/2}).$

Problem Large-dimensional posets with sparse cover graphs have to be *tall*. What else?

Theorem [Howard, Streib, Trotter, Walczak, Wang, 2016+] Large-dimensional posets with planar cover graphs have to contain a large **k** + **k**.

Problem Large-dimensional posets with sparse cover graphs have to be *tall*. What else?

Theorem [Howard, Streib, Trotter, Walczak, Wang, 2016+] Large-dimensional posets with planar cover graphs have to contain a large **k** + **k**.

Thank You