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GRrRAPH MINORS

G

minor\' top. minor

Theorem [Robertson, Seymour]
Let C be a proper minor-closed class of graphs. Then there exist
H1, coo ,Hk such that

C={G:H; £« Gforallie [k]}.



PROPER MINOR-CLOSED GRAPH CLASSES

Examples:
e planar graphs
e bounded genus graphs
e graphs of bounded path-width
e graphs of bounded tree-width

Sparse?
e linear many edges

¢ even their minors have linear many edges!



SHALLOW MINORS

contract
>

branch sets have radius < 1 1-shallow minor of G

C class of graphs
CVr  setof r-shallow minors of graphs in C

A class C has bounded expansion if there exists a function f s.t.
graphs in C V r have density < f(r).



NOWHERE DENSE CLASSES

A class C is nowhere dense if for all r > 0, graphs of C V r have
edge density O(n€), for each € > 0.

A class C is nowhere dense if for all r > 0,

CVr # setof all graphs.

A class C is somewhere dense if it is not nowhere dense.
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BOUNDED EXPANSION - CHARACTERIZATIONS

e r-shallow topological minors

e transitive fraternal augmentations
¢ generalized coloring numbers

¢ low-treedepth colorings

e neighborhood complexity

e neighborhood covers

e splitter game

e dimension?



WEAK COLORING NUMBERS

u

u is weakly r-reachable from v
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WEAK COLORING NUMBERS
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weakly 1-reachable from v



WEAK COLORING NUMBERS
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WEAK COLORING NUMBERS

® weakly 3-reachable from v

wcol,(G) := min max |WReach,[v, t]].
e v

Theorem [Zhu "09]
A class C has bounded expansion iff there exists a function f
such that wcol,(G) < f(r) forall» > 0 and G € C.



WEAK COLORING NUMBERS

® weakly 3-reachable from v

wcol,(G) := min max |WReach,[v, t]] .
e v

Theorem [Zhu "09]
A class C is nowhere dense iff for each integer r > 0 and € > 0,
we have wcol,(G) = O(n°) for every G € C.



ALGORITHMIC ASPECTS



DoMINATING SET PROBLEM

Input: Graph G, number k

Problem: Are there k ver-
tices dominating all vertices
of G?

NP-complete in general. Is it fixed-parameter tractable? So is
there a function f and an algorithm solving the problem in time

f(k)-nPD 2

Dominating Set Problem is W[2]-complete
— unlikely that there exists an FPT for it



NP-comPLETE GRAPH PROBLEMS

Dominating Set Problem
k-Colorability
CLIQUE, INDEPENDET SET

Steiner tree problem

k-disjoint paths

What are the largest graph classes on which certain types of
problems become tractable?



GRrRAPH PROPERTIES

Read tractibility of a problem directly off its
mathematical description.

Properties definable in First-Order Logic (FO):
e k-clique, k-independet set
e subgraph containment (for some fixed graph)

e k-dominating set

Properties definable in Monadic Second-Order Logic (MSO):
e connectivity
e hamiltonicity

e k-colorability



MEeTA-THEOREMS

somewhere dense

locally excl. minor

| bounded expansionl W
locally bd. treewidth

WEXCIuded mne m

bd. degree
|bounded genusl w
II bd. treewidth

FO is W[1]-hard

FO in f(k) - n'**

FOin f(k)-n
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DiMENSION

The dimension of a poset P is the dimension of P.

So the dimension is just the dimension.

More precisely, the dimension of P is the least d such that
dim(P) < d.

Dually, the dimension of P is the largest d such that dim(P) > d.
So it is not the boolean dimension or the interval-dimension, it just
the dimension.

That is to say, the Dushnik-Miller dimension and not the
Ore-dimension (but almost).

In other words, dimension is “Graph Coloring for Grown-ups”.



DiMENSION

The dimension of a poset P is the least d such that P is
isomorphic to a subposet of (R?, <;).

IRS




CovER (GRAPHS

123

diagram of Bs cover graph comparability graph



WIDTH AND DIMENSION

width(P) maximum size of an antichain in P
height(P) maximum size of a chain in P

Theorem [Dilworth "50]

dim(P) < width(P).

77

“Large-dimensional posets are wide

but not necessarily tall:




KELLY'S EXAMPLES
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GENERAL QUESTION

“Do large-dimensional posets with sparse cover
graphs have to be tall?”



ANSWER: YEs AND NoO

Theorem [Streib, Trotter, 2014]
The dimension of posets with planar cover graphs is bounded
in their height.

Incidence Posets of graphs:

s

5

Theorem [Dushnik, Miller, "41]

dim(Px,) > loglogn.



ANSWER: YEs AND NoO

Theorem [Streib, Trotter, 2014]
The dimension of posets with planar cover graphs is bounded
in their height.

Incidence Posets of graphs:

i Vo

cover(Pk,) Ks

Theorem [Dushnik, Miller, "41]

dim(Px,) > loglogn.



CoveER GRAPHS AND DIMENSION
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WEAK COLORING NUMBERS AND DIMENSION

Theorem [Joret, Micek, W., 2016+]
Let P be a poset of height at most /1 with a cover graph G such
that wcolz,(G) < c. Then

dim(P) < 6°.
Graph property | wcol,(G)
bounded genus | O(r%) [vH-OdM-Qu-R-S, 2016+]
treewidth t o) [GKRSS, 2016]
no K,, minor O(r* 1)  [vH-OdM-Qu-R-S, 2016+]
no K, top. minor 20(rlogr) [KPRS, 2016]
bd. expansion f(r) [Zhu, 2009]




WEAK COLORING NUMBERS AND DIMENSION

Theorem [Joret, Micek, W., 2016+]
Let P be a poset of height at most /1 with a cover graph G such
that wcolz,(G) < c. Then

dim(P) < 6°.

Graph property | wcol,(G) | dim(P)
bounded genus | O(r%) 2007)
treewidth ¢ o(rt 20(H")

no K, minor o™y | 200"

20(r log ) 220(h logh)

no K; top. minor

bd. expansion f(r) g(h)



CURRENT BEST BOUNDS
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29(h =
Q(h%)Bounded pathwidth O(h"2)




NOWHERE DENSE COVER GRAPHS

Theorem [Joret, Micek, W., 2016]
There are height-2 posets with cover graphs in a nowhere
dense class C such that their dimension is unbounded.

Adjacency posets:

L1 XXX

G APg

Lemma: x(G) < dim(APg).

C = {graphs G with A(G) < girth(G)}.
e nowhere dense , unbounded y
e — dim(APg) is unbounded for G € C
e Ge€C = cover graph of AP; inC



NOWHERE DENSE COVER GRAPHS

Theorem [Joret, Micek, W., 2016]
There are height-2 posets with cover graphs in a nowhere
dense class C such that their dimension is unbounded.

Adjacency posets:

L1 XXX

G APg

Lemma: x(G) < dim(APg).

C = {graphs G with A(G) < girth(G)}.
e has locally bounded treewidth, unbounded x
e — dim(APg) is unbounded for G € C
e Ge€C = cover graph of AP; inC



OPEN PROBLEMS

A monotone class C has bounded expansion iff
for each 1 > 1, posets of height at most h with cover graphs in C
have bounded dimension.

Let P be a class of height-2 posets with unbounded average
degree. Is the dimension of subposets of posets in P necessarily
unbounded?



OPEN PROBLEMS

Posets P of bounded height with cover graphs in a nowhere
dense class have dimension

dim(P) < O(n°),

for each e > 0.

Fact:
For every monotone somewhere dense class C, there exists
such that there are posets P of height at most /1 and

dim(P) = Q(n'/?).



OPEN PROBLEMS

Large-dimensional posets with sparse cover graphs have to be
tall.
What else?

Theorem [Howard, Streib, Trotter, Walczak, Wang, 2016+]
Large-dimensional posets with planar cover graphs have to
contain a large k + k.
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Large-dimensional posets with sparse cover graphs have to be
tall.
What else?

Theorem [Howard, Streib, Trotter, Walczak, Wang, 2016+]
Large-dimensional posets with planar cover graphs have to
contain a large k + k.
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