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1 Starting Point

The need to deal with huge and complex networks has led to seminal results in graph theory
that mark its coming of age as a mathematical field. A key result is Szemerédi’s Regularity
Lemma, which shows that every dense graph can be decomposed into a well-structured
part and a random-like part, up to a small error term [55]. This work was largely responsible
for Szemerédi winning the Abel prize, and led in part to the work of Tao for which he won a
Fields medal.

While Szemerédi’s Regularity Lemma describes the structure of dense graphs, at the op-
posite end of the spectrum the celebrated Robertson-Seymour theory describes the struc-
ture of graphs excluding a fixed graph as a minor. These are key examples of sparse graphs,
graphs with a number of edges linear in the number of vertices. A minor of a graph is any
graph obtained by removing vertices, removing edges, and contracting edges (in any order).
Prime examples of graph classes closed under taking minors are planar graphs, and more
generally graphs that can be drawn on a fixed surface without edge crossings.

A surface.1

Graph minor theory takes its roots in Kuratowski’s the-
orem characterizing planar graphs as the graphs exclud-
ing K5 and K3,3 as minors. Starting in the late 1970’s,
Robertson and Seymour developed a rich theory in a se-
ries of 23 papers, for which they were awarded the Fulk-
erson Prize in 2006. This series culminated in the proof of
the Graph Minor Theorem [52] showing that a Kuratowski-
type theorem exists for every graph class that is closed
under taking minors: Every minor-closed class of graphs can be characterized by excluding
some finite set of graphs as minors. In his textbook on graph theory, Diestel [18] described
this theorem as “one of the deepest theorems that mathematics has to offer”.

Structure of graphs excluding a
minor.1

The heart of Robertson and Seymour’s proof of the
Graph Minor Theorem is an approximate structure the-
orem for graphs excluding a fixed graph as a minor,
the Graph Minor Structure Theorem [51]. This theo-
rem shows that such graphs have a fundamentally 2-
dimensional structure that is not too far from planar
graphs. The building blocks are graphs embedded in a
surface of bounded genus to which some controlled noise
is added.

The Graph Minor Structure Theorem had a tremen-
dous impact in graph theory, extending well beyond its role in the proof of the Graph Minor
Theorem. However, the theorem has a drawback which is perhaps not obvious, namely,
planar graphs appear as a building block. Indeed, sometimes the real difficulty comes from
planar graphs.

1Image credit: Felix Reidl, used with permission.
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For this reason, one would like to express planar graphs in terms of graphs with a sim-
pler structure, in a way that proves useful for structural and algorithmic applications. This
has been done very recently. Building on pioneering works by Pilipczuk and Siebertz [46],
together with our coauthors we proved the following ‘product structure theorem’ [24]. This
result was first accepted at the conference FOCS, which along with STOC is the most se-
lective conference in theoretical computer science, and then in the Journal of the ACM, the
most prestigious journal in theoretical computer science.

Theorem 1 (Product Structure Theorem). Every planar graph is a subgraph of the strong
product of a graph of treewidth 8 and a path.

The strong product of graphs G and H is the graph with vertex set V (G) × V (H) where
(u,x) is adjacent to (v, y) if u = v and xy is an edge, or x = y and uv is an edge, or uv and
xy are both edges. Here is an illustration of the strong product of a tree and a path:

� =

Treewidth is a measure of how similar a graph is to a tree (the lower the better). It is a
fundamental invariant in graph minor theory. Graphs of bounded treewidth have a simple
tree-like structure. Thus, one can think of the above theorem as a recipe for extending
results that are known to hold for bounded treewidth graphs to planar graphs. Considerable
success has already been obtained in this way since the theorem appeared, leading to
proofs of some decades-old conjectures. We give here a very brief account, see the next
section for more details.

1. We showed that the ‘queue-number’ of planar graphs is bounded by an absolute con-
stant, confirming a much-studied conjecture of Heath, Leighton, and Rosenberg from
1992. The resulting paper [24] was accepted at the conference FOCS, and in the
Journal of the ACM.

2. We obtained a short proof of a well-known conjecture of Alon, Grytczuk, Hałuszczak,
and Riordan from 2002, stating that planar graphs can be colored using a bounded
number of colors in such a way that no path is ‘repetitively colored’. The paper [19]
was published in the new journal Advances in Combinatorics launched by Tim Gowers
and Dan Král in 2019.

3. We obtained asymptotically optimal bounds for the ‘adjacency labeling problem’ for
planar graphs. The resulting paper [23] was accepted at the conference FOCS, and
in the Journal of the ACM.

4. We found (essentially) optimal constructions of universal graphs for planar graphs,
which are graphs containing all n-vertex planar graphs as subgraphs. The resulting
paper [26] was recently submitted to a journal and is currently under refereeing.

2 Objectives and work programme

2.1 Anticipated total duration of the project

36 months
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2.2 Objectives

The proposed project has the following three objectives:�

�

�

�
A. Find new applications of the product structure theorem for planar graphs.
B. Develop product structure theory further.
C. Push the limits of structural graph theory.

The product structure theorem for planar graphs already found a number of important
applications in combinatorics and theoretical computer science in a very short time. It is
reasonable to expect that more will be found in the near future. This new tool might indeed
be the key to make progress on a number of open problems related to planar graphs. In this
proposal, we list some directions which we believe have potential in this respect.

Besides hunting for new applications, we believe it is worth trying to improve and develop
the theory further. First, the current bounds are most likely not tight, so there is a room for
improvement. Second, it would be very interesting to identify new graph classes of interest
that satisfy some form of a product structure theorem. Right now, besides planar graphs,
only a handful of examples are known.

Last but not least, we would like to use the synergy of the three PIs working together, and
their respective teams, to have a go at tackling some long standing challenges in structural
graph theory. Our focus here will be on obtaining the best possible upper bound in the
famous grid minor theorem of Robertson and Seymour, one of the corner stones of graph
minor theory with countless applications. This is without doubt an ambitious (and risky)
objective.

2.3 Work programme including proposed research methods
First, we recall the statement of the product structure theorem for planar graphs, and

give a quick summary of previous applications and generalizations.

Theorem 2 (Product Structure Theorem [24]). Every planar graph is a subgraph of the
strong product of a graph of treewidth 8 and a path.

In other words: For every planar graph G, there is a graph H of treewidth 8 and a path
P such that G is a subgraph of H ⊠ P , where ⊠ denotes the strong product. Here is an
illustration:

H

�⊆

P
G

Previous applications

We discovered the product structure theorem when trying to solve a particular problem
about planar graphs, namely showing that planar graphs have bounded queue-number. This
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was the first of a series of applications. In this section we briefly review these applications.
The queue-number of a graph is the minimum positive integer c such that its edges

can be colored using c colors and its vertices ordered so that no two edges of the same
color ‘nest’. Two edges nest if they have no common endpoint and the two endpoints of
one edge appear strictly between those of the other edge in the ordering. Heath, Leighton,
and Rosenberg [36] conjectured in 1992 that the queue-number of every planar graph is
bounded from above by an absolute constant. It was well known that graphs of bounded
treewidth have bounded queue-number [22, 58]. Using this result in conjunction with the
product structure theorem, it is an easy matter to prove the conjecture for planar graphs,
see [24].

A vertex coloring of a graph is nonrepetitive if there is no path with an even number of
vertices such that the sequences of colors on the first and second halves are the same.
The nonrepetitive chromatic number is the least number of colors in such a coloring. In
1906 Thue [56] showed that there are arbitrarily long squarefree words on an alphabet of
size 3, or equivalently, that paths have nonrepetitive chromatic number at most 3. Thue’s
result lead to the birth of the field of combinatorics on words. In 2002, Alon, Grytczuk,
Hałuszczak, and Riordan [2] famously conjectured that this result could be extended to pla-
nar graphs, that is, that they have bounded nonrepetitive chromatic number. This became
the central problem in this area. With our coauthors we proved this conjecture [19]. Similarly
as for queue-numbers, it was well known that graphs of bounded treewidth have bounded
nonrepetitive chromatic number [42]. This is then used to show that planar graphs have
bounded nonrepetitive chromatic number using the product structure theorem.

In a labeling scheme, the task is to assign bitstrings (labels) to the vertices of a graph so
that one can determine whether any two vertices are adjacent just by looking at their labels.
A classical result of Kannan, Naor, and Rudich [39] constructs such a labeling scheme for
n-vertex planar graphs with labels of bit length 4⌈log2 n⌉. Shorter bit lengths were achieved
in subsequent papers, down to (2 + o(1)) log2 n in 2007 [31]. Using the product structure
theorem, Bonamy, Gavoille, and Pilipczuk [8] improved this to (4/3 + o(1)) log2 n. This is
motivated by an old conjecture in the area stating that (1 + o(1)) log2 n is achievable, which
is best possible. As already mentioned, together with our coauthors we recently proved this
conjecture [23].

PIs Joret, Micek, and their coauthors [26] recently used the product structure theorem
to find (essentially) optimal constructions of universal graphs for planar graphs. For every
n ≥ 1, they construct a graph Un with only n1+o(1) edges such that Un contains every n-
vertex planar graph as a subgraph. In 1982, Babai, Chung, Erdős, Graham, and Spencer
constructed such universal graphs with O(n3/2) edges, and this remained the best known
construction for almost four decades until our work.

The above four applications are the most important ones to date. In each instance, the
product structure theorem lead to the solution to well-known problems. The theorem was
applied successfully to other problems as well, achieving less dramatic but still significant
progress. This includes (1) a near-optimal bound for p-centered colorings of planar graphs
by PI Micek and his coauthors [17], (2) an asymptotically optimal bound for ℓ-vertex rankings
of planar graphs by Bose, Dujmović, Javarsineh, and Morin [9], and (3) a polynomial bound
on the ‘neighborhood complexity’ of planar graphs by PI Joret and his coauthor [38].

Beyond planar graphs

It is natural to wonder if other natural classes of graphs besides planar graphs admit some
form of product structure theorem. In our first paper [24], we showed that this is the case
for graphs that have a (crossing-free) drawing in a fixed surface:
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Theorem 3 (Product Structure Theorem—graphs on surfaces [24]).
Every graph embeddable in a surface of Euler genus g is a subgraph of the strong product
of a graph of treewidth 2g + 8 and a path.

A graph J is apex if J − v is planar for some vertex v of J . One way to generalize the
above result is to consider graphs excluding some fixed apex graph as minor, because this
includes graphs of bounded genus: For every surface there is an apex graph that cannot be
drawn in it. We showed the following extension:

Theorem 4 (Product Structure Theorem—apex-minor free graphs [24]).
For every apex graph J , there is a constant cJ such that every graph excluding J as minor
is a subgraph of the strong product of a graph of treewidth cJ and a path.

A last positive result is due to Dujmović, Morin, and Wood [21] and concerns k-planar
graphs, graphs that can be drawn in the plane with at most k crossings per edge.

Theorem 5 (Product Structure Theorem—k-planar graphs [21]).
For every k ≥ 1, every k-planar graph is a subgraph of the strong product of a graph of
treewidth O(k5) and a path.

A motivation for identifying graph classes admitting a product structure theorem is that
such classes automatically benefit of the results proved using the product structure, such
as all the results mentioned in Section 2.3. (Note that the constants in these results depend
on the bound on the treewidth.)

2.3.1 Objective A. Apply product structure theory.

We list here a few open problems that we believe are worth approaching from the perspec-
tive of the product structure theorem for planar graphs. The list is not exhaustive, its purpose
is to give an idea of potential future applications.

Problem 1: Universal point sets for planar graphs. Say that a set of points in the
plane is n-universal if every n-vertex planar graph has a straight-line drawing in the plane us-
ing points from the set for its vertices. What is the minimum size of an n-universal point set?
If we restrict ourselves to realizing bipartite planar graphs, then a recent breakthrough [28]
provides such point sets of size O(n). However, for arbitrary planar graphs, the best known
constructions of n-universal point sets have size O(n2) [16], which has not been improved
since 1990. Yet, no superlinear lower bound is known, the best lower bound is of order
1.235n [43]. Improving the asymptotics, i.e., getting a subquadratic upper bound or a super-
linear lower bound, is a famous open problem in geometric graph theory. We believe that a
Õ(n3/2) upper bound should be provable:�

�
�
Goal. Show the existence of n-universal point sets of size Õ(n3/2).

(The notation Õ means ‘up to polylog factors’.) Such a result would be a breakthrough.
Our reason for considering this problem is the following. In 2015, Fulek and Tóth [30] con-
sidered a variant of universal point sets: Instead of considering all n-vertex planar graphs,
they only consider those that have treewidth 3. For this variant, they constructed universal
point sets of size Õ(n3/2). In the paper proving the product structure theorem [24], we also
showed the following variant of the theorem: For every planar G, there is a planar graph
H of treewidth 3 and a path P , such that G is a subgraph of H ⊠ P ⊠K3 (where K3 is the
triangle). Our goal is thus to lift the Fulek-Tóth result to all planar graphs, using this variant
of the product structure theorem.
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Problem 2: Straight-line drawings of planar graphs with integer edge lengths.
By Fáry’s theorem, every planar graph can be drawn with edges represented as straight-
line segments. As is well-known, such drawings can be realized with integer coordinates.
However this does not imply that all edge lengths are rational, or equivalently after scaling,
integer. Harborth [35] conjectured in 1987 that such drawings always exist. Despite much
efforts over the years, the conjecture remains widely open. It is known to hold only in a
handful of cases, including planar graphs of treewidth 3 [5]. The latter result is especially
interesting since, as mentioned above, a variant of the product structure theorem is phrased
precisely in terms of planar graphs of treewidth 3. The goal is thus again to lift the result for
planar graphs of treewidth 3 to all planar graphs using this theorem.�

�
�
�

Goal. Show that planar graphs admit straight-line drawings with integer edge
lengths.

Problem 3: Adjacency labelings and universal graphs. A family G of graphs admits
an f(n)-bit adjacency labeling scheme if there exists a function A ∶ ({0,1}∗)2 → {0,1} such
that for every n-vertex graph G ∈ G there exists ℓ ∶ V (G)→ {0,1}∗ such that ∣ℓ(v)∣ ≤ f(n) for
each vertex v of G and such that, for every two vertices v,w of G,

A(ℓ(v), ℓ(w)) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if vw /∈ E(G);
1 if vw ∈ E(G).

The best-known labeling scheme for Kt-minor-free graphs has labels of length (2 +
o(1)) logn, due to Gavoille and Labourel [31] in 2007.

While PIs Joret, Micek and their coauthors [23] recently obtained adjacency labeling
schemes of length (1 + o(1)) logn for planar graphs, extending this result to Kt-minor free
graphs proved to be stumbling point so far. The main difficulty is that the class of Kt-minor-
free graphs do not admit a product structure theorem for t ≥ 6. It seems that all we can
do is using the Graph Minor Structure Theorem of Robertson and Seymour to decompose
the graphs into pieces that admit a product structure (up to a bounded number of apex
vertices). However, handling the decomposition appears to be tricky, and we will probably
need to develop a stronger ‘weighted’ version of the theorem proved in [23] to handle the
combination of the pieces.�

�
�
�

Goal. Show that, for a each fixed integer t ≥ 1, Kt-minor-free graphs admit (1 +
o(1)) logn adjacency labeling schemes.

We remark that any bound better than (2+o(1)) logn would already be an achievement,
as this would require a new technique, the proof method in [31] for Kt-minor free graphs
cannot give a better bound than (2 + o(1)) logn.

Problem 4: Weisfeiler-Leman dimension of graphs. The Weisfeiler-Leman dimen-
sion of a graph is a measure of its descriptive complexity. It takes its roots in the Weisfeiler-
Leman (WL) algorithm, a simple heuristic to test for graph isomorphism dating back to the
1960s. (This algorithm is also known as ‘color refinement’.) The WL algorithm is a relatively
fast algorithm consisting in some simple local computations around each vertex, in order
to try and distinguish the two input graphs. If the algorithm succeeds, then the two graphs
are non isomorphic. However, the algorithm could fail to distinguish two non-isomorphic
graphs given in input. There is a higher dimensional version of the algorithm called the k-
dimensional WL-algorithm, where k is a positive integer. In this version, local computations
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are performed for each k-tuple of vertices, instead of each vertex. With larger values of k,
the algorithm becomes better at distinguishing non-isomorphic graphs, at the price of an
increased running time (which is still polynomial for fixed k).

For a graph G, the Weisfeiler-Leman (WL) dimension of G is the smallest positive integer
k such that the k-dimensional WL-algorithm distinguishes G from every non-isomorphic
graph H. By extension, for a class C of graphs, the WL-dimension of C is the smallest
positive integer k such that every graph in C has WL-dimension at most k, or +∞ in case
there is no such k.

It is for instance known that the WL-dimension of planar graphs is bounded: Kiefer,
Ponomarenko, and Schweitzer [41] proved that planar graphs have WL-dimension at most
3. More generally, WL-dimension is bounded for every proper minor-closed class of graphs,
a seminal result in this area due to Grohe [32].

As it turns out, WL-dimension can be characterized in multiple ways, using tools from
different areas of theoretical computer science. A key connection is with logic: It was
shown [11, 37] that two graphs can be distinguished by the k-dimensional WL-algorithm
if and only they can be distinguished by a logic known as the Ck+1 logic, which is the (k+1)-
variable fragment of first order logic with counting quantifiers.

Another connection is with combinatorial optimization: Atserias and Maneva [4] showed
that the smallest k required to distinguish two non-isomorphic graphs in the k-dimensional
WL algorithm is equal to the level of the Sherali-Adams relaxation of a natural formulation
of graph isomorphism testing as an integer linear program.

The rich and diverse characterizations of the WL-dimension of a graph G led researchers
to consider this invariant as a fundamental measure of the descriptive complexity of G. For
instance, the authors of [33] write the following about the k-dimensional WL-algorithm:

[. . . ] in view of the wide variety of seemingly unrelated combinatorial, logical,
and algebraic characterisations of the algorithm, we are convinced that the struc-
tural information the algorithm is able to detect is of fundamental importance.

This leads us to the question we plan on studying: Can the k-dimensional WL-algorithm
detect graphs having a so-called ‘product structure’? More precisely, we would like to show
that such graphs have bounded WL-dimension:�

�

�

�
Goal. Given a fixed integer t ≥ 1, show that the class of graphs G that are sub-
graphs of H⊠P for some graph H of treewidth t and some path P has WL-dimension
bounded by a function of t.

It is known that planar graphs [41] and bounded-genus graphs [32, 33] have bounded
WL-dimension, which gives some evidence for the above conjecture. Moreover, the WL-
dimension of graphs of treewidth t is known to be at most t [40] (see also [34] for an earlier
bound). Thus, to solve our conjecture, it ‘only’ remains to handle the operations of taking
the strong product with a path, and taking subgraphs.

A (positive) solution to the above problem would imply that all graph classes admitting a
product structure have bounded WL-dimension. This includes for instance k-planar graphs,
for which this is currently unknown as far as we are aware. A second motivation is that
it might give a simpler proof that graphs of bounded genus have bounded WL-dimension
(likely at the price of a worse bound), as the two existing proofs [32, 33] are rather long and
technical.

Problem 5: Extended formulations of spanning tree polytopes. What is the min-
imum number of facets in a polytope that projects to the spanning tree polytope of an n-
vertex graph G? If G is planar, a beautiful proof of Williams [59] gives a O(n) bound, which
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is best possible. It is an open problem to show a linear bound more generally for graphs
embeddable in a fixed surface. The best known bound is O(n3/2), proved by PI Joret and
his coauthors [29]. We would like to re-prove the linear bound for planar graphs using the
product structure, which would then extend directly to the bounded Euler genus case thanks
to the extensions mentioned in Section 2.3.�

�

�

�
Goal. Given a fixed integer t ≥ 1, show that for the class of graphs G that are sub-
graphs of H⊠P for some graph H of treewidth t and some path P , the corresponding
spanning tree polytopes admit extended formulations of linear size.

Further problems. Besides the five concrete problems above, there is of course a
diverse range of potential applications for the product structure theorems, of which we just
mention two examples here. (1) What is the smallest k such that every planar graph has
‘oriented chromatic number’ at most k? It follows from a deep result of Borodin from 1979
that k ≤ 80 (see [47]), and the bound has never been improved, despite much efforts.2 (2)
What is the smallest k such that every planar graph has an ‘odd k-coloring’? Introduced
just recently [45] as a relative to conflict-free colorings, the best known upper bound is
8 [44]. For both problems, the product structure of planar graphs itself might be too crude
a tool to obtain improved bounds on the number of colors. However, we believe that the
so-called ‘tripod decompositions’ used in the proof of the product structure [24] might have
potential. Indeed, this proved to be the case recently for an unrelated problem, that of
bounding the ‘neighborhood complexity’ of planar graphs: A first bound was established
using the product structure, and then a much better bound was found via a careful use
of tripod decompositions [38]. This gives us hope that these decompositions might help
improving bounds for the above coloring problems as well.

2.3.2 Objective B. Develop product structure theory.

As already discussed in Section 2.3, product structure is not limited to planar graphs, but
constitutes an essential structural property for many graph classes. Let us say that a graph
class G admits product structure if there exists a universal constant t such that every graph
G in G is a subgraph of the strong product of a graph of treewidth t and a path. The smallest
such t is called the row treewidth rtw(G) of the graph G, respectively rtw(G) of the graph
class G [10]. So G admits product structure if and only if rtw(G) = O(1).

The known examples of natural graph classes admitting product structure (see Sec-
tion 2.3) are all very close to planar graphs, and indeed the proofs typically first reduce to
the planar case and then apply the product structure theorem for planar graphs. It would be
interesting to find classes that are genuinely different from planar graphs. This is very much
exploratory. In fact, there has been little research about which graph classes do not admit
product structure.

Problem 6: Identify necessary conditions and sufficient conditions for a graph
class to admit product structure. A first obstruction stems from the treewidth of small
radius subgraphs of graphs in G. In fact, if G ⊆ H ⊠ P with tw(H) = t, then for the k-th
neighborhood Nk(v) = {u ∈ VG ∶ distG(u, v) ≤ k} of every vertex v in G we have Nk(v) ⊆
H ⊠ P2k+1, and thus Nk(v) induces a subgraph of G of treewidth at most tw(H ⊠ P2k+1) ≤
t(2k + 1) = O(k), if t is a constant. In other words, a necessary condition for G to admit
product structure is, that the treewidth of subgraphs of G is linear in their radius; a condition
known as linear local treewidth. We proved that if G is minor-closed, then G having linear

2This question was suggested to us by Ross Kang
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local treewidth is also sufficient for admitting product structure [24]. However, most recently,
Bose et al. [10] proved that for general graph classes it is not.

On one hand, we seek to identify further natural classes of graphs admitting a product
structure theorem. We thereby strive for general structural properties that together with lin-
ear local treewidth are sufficient to conclude bounded row treewidth. On the other hand,
we plan to identify further necessary conditions for product structure, which ideally are effi-
ciently and effectively testable for many graph classes. Here, classes of geometric intersec-
tion graphs constitute a promising starting point to approach the above goal, as these are
hereditary (closed under taking induced subgraphs) but in general not minor-closed. We
plan to mainly consider intersection graphs of specific convex objects in R2, such as disks
or axis-aligned boxes.

In order to avoid arbitrarily large treewidth already in the neighborhood of a vertex (and
therefore no linear local treewidth), additional restrictions must be imposed. For example,
it is easy to see that unit disk graphs with bounded clique number admit product struc-
ture [25], while arbitrary disk graphs with clique number 3 do not even have linear local
treewidth, as there can be arbitrarily large grids in the neighborhood of a single vertex. Let
us require for a fixed α ∈ [0,1] that each disk is α-free, i.e., has at least an α-proportion of
its area disjoint from all other disks. Then for α = 1 we obtain the class of planar graphs,
which has product structure, while for α = 0 we have arbitrarily large cliques and hence no
product structure. Varying α strictly between 0 and 1, we can investigate when α-free disk
graphs admit product structure and when they admit linear local treewidth. This either leads
to a natural non-minor-closed class in which linear local treewidth is sufficient for product
structure, or to a new necessary condition for product structure.�

�
�
�

Goal. Determine the smallest α1 and α2 such that α1-free disk graphs admit product
structure and α2-free disk graphs have linear local treewidth.

Another natural requirement is to require bounded maximum degree. It seems believ-
able that disk graphs in R2 with bounded maximum degree have linear local treewidth, while
in R3 for example 3-dimensional grid graphs are contact graphs of unit disks with small max-
imum degree whose treewidth grows quadratically with the radius. Is it true that disk graphs
in R2 of bounded degree admit product structure? What about axis-aligned boxes, i.e.,
graphs of boxicity 2? (As interval graphs, i.e., graphs of boxicity 1, are chordal, they admit a
trivial product structure of the form H ⊠ P1 as soon as we bound their clique number.)

Let us remark that this direction of research is very much related to recent efforts led
by Maria Chudnovsky and others to identify the induced subgraph obstructions to graphs of
bounded treewidth; see for example [1] for the current state of the art.

Problem 7: Approximating product structure. It is well known that computing tree-
width is NP-complete [3] but testing tw(G) ≤ k for any fixed k is possible in linear time [7]. A
famous open problem is whether treewidth can be approximated to within a constant factor.
The current best approximation algorithm achieves an approximation factor of O(

√
logn)

for n-vertex graphs [27]. In a very recent preprint [6], PI Ueckerdt and his coauthors show
that computing rtw(G) is NP-complete, even when deciding rtw(G) = 1 for a graph G with
tw(G) = 2. Even approximating the row treewidth is hard; at least when assuming the
unproven small set expansion conjecture [60], which would in the same way imply that
there is no constant factor approximation for treewidth. On the other hand, treewidth can
be approximated to within constant factor for planar graphs [54], while Theorem 1 implies
even an additive approximation for row treewidth of planar graphs. Is it possible to use
product structure to approximate treewidth? Also, is row treewidth polynomially computable
for graphs of bounded radius?
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�
�

�
�

Goal. Study the approximability of row treewidth and its connections with the approx-
imability of treewidth.

Problem 8: Improving product structure. Our goal here is to improve the existing
product structure theorems, starting with planar graphs: What is the smallest t such that
every planar graph is a subgraph of the strong product of a graph of treewidth t and a
path? Our original proof shows t ≤ 8, and PI Ueckerdt and his coauthors subsequently
improved this to t ≤ 6 [57], but any better bound would need a new idea. In [24] we showed
that t ≥ 3, while treewidth 3 can indeed be achieved if we allow an additional clique factor.
Specifically, we show that every planar graph G is a subgraph of H ⊠ P ⊠Kc, where c = 3,
i.e., the complete graph on three vertices. One motivation for reducing c or t is that, in the
applications of the product structure theorem (see Section 2.3), the constants depend on
the values of t and c.�

�
�
�

Goal. Prove or disprove that every planar graph is a subgraph of the strong product
of a graph of treewidth 3 and a path.

A further natural question is whether we can impose additional properties of the graph
H in the strong product G ⊆ H ⊠ P , possibly if we assume that G meets similar require-
ments? This direction of research offers many different variations and potential settings.
The investigation in each case would lead to a deeper understanding of product structure
in general and thus further the development of this powerful theory. Let us mention some
concrete examples.

(1) PI Joret, Micek and their coauthors recently showed [20] that we cannot bound the
maximum degree of H (while keeping tw(H) constant), even if G is planar and has
maximum degree 5. However, it is an open problem whether every planar graph G of
maximum degree ∆ is contained in a strong product of the form H ⊠ P ⊠Kc where
tw(H) = 2, P is a path, and c is some function of ∆.

(2) Is every planar bipartite graph G a subgraph of H ⊠P where H is planar and bipartite
and tw(H) = O(1), or a subgraph of H ⊠ P where tw(H) < 6?

(3) Is every planar graph G a subgraph of H⧄P where tw(H) = O(1) and ⧄ is the slanted
product of H and P which for every edge (u, v) of H and (x, y) of P contains the edge
between (u,x) and (v, y) but not between (v, x) and (u, y)?

(4) Is every planar n-vertex graph G a subgraph of H ⊠ P where tw(H) = O(1) and the
length of P is o(n), i.e., sublinear in the number of vertices in G?

2.3.3 Objective C. Push the limits of structural graph theory.

Problem 9: Improve the bound in the Grid Minor Theorem. The Graph Minor Struc-
ture Theorem describes the approximate structure of graphs not containing a fixed graph H
as minor. In that theorem, H can be any graph. However, if H is planar then the structure
theorem becomes much simpler: Robertson and Seymour [50] proved that H-minor-free
graphs have bounded treewidth in this case. This is known as the Grid Minor Theorem,
because it is enough to prove this theorem when H is a grid, since every planar graph is a
minor of a large enough grid.

The Grid Minor Theorem has numerous applications in graph theory [48]. It is also of
algorithmic and practical importance due to the connection between treewidth and separa-
tors: Informally, a graph has treewidth O(k) if and only if all its subgraphs admit O(k)-size
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separators. For this reason, there has been much interest in getting the best-possible bound
on the treewidth of graphs with no k×k grid minor. In sharp contrast with the general Graph
Minor Structure Theorem, here very good bounds are known. Most notably, a breakthrough
result of Chekuri and Chuzhoy [14] gives a bound that is polynomial in k. Currently, the best
known bound is O(k9 polylog(k)), proved by Chuzhoy and Tan [15] in 2019. Robertson,
Seymour, and Thomas [53] conjectured in 1994 that the best possible bound is O(k2 log k).
This bound is attained by random graphs, which often provide tight examples in structural
graph theory.�



�
	Goal. Prove a tight upper bound on the treewidth of graphs with no k × k grid minor.

We are eager to pursue this ambitious goal now, for the following reason. A well-known
corollary of the Grid Minor Theorem, proved by Robertson and Seymour in their original
paper [50], is the following approximate min-max relation: For every fixed planar graph H
there exists a function f(k) such that every graph G either has k vertex disjoint copies of H
as a minor, or there is a set X of at most f(k) vertices such that G−X has no H-minor. As a
forerunner of their polynomial bound for the Grid Minor Theorem, Chekuri and Chuzhoy [13]
established a near-optimal bound for the latter result, a bound of f(k) = O(k logc k) for some
absolute constant c. It was conjectured long ago that the right bound is O(k log k), i.e. we
can take c = 1. This was eventually proved by PI Joret and his coauthors [12] recently. The
proof approach is different from [13] and introduces some new ideas that could be helpful
in attacking the above problem.

Here are some further details on the proposed approach. The goal is to establish a
tight bound on the treewidth of graphs with no k × k grid minor, which is conjectured to be
O(k2 log k). In an attempt at getting a polynomial bound for the Grid Minor Theorem that
predates the breakthrough of Chekuri and Chuzhoy [14], Reed and Wood [49] introduced a
generalization of grid minors called grid-like minors: These are composed of a collection of
paths in the graph whose intersection graphs are bipartite and contain a large clique minor.
While these grid-like minors turned out to be not structured enough to deduce the desired
polynomial bound for the Grid Minor Theorem, they provided inspiration for the concept of
orchards introduced by PI Joret and his coauthors [12]. This is another generalization of
grid minors. An orchard consists of a collection of pairwise vertex-disjoint paths (horizontal
paths) and a collection of vertex-disjoint trees (vertical trees) such that every vertical tree
intersects every horizontal path in a non-empty connected subgraph.

An orchard. Horizontal paths are depicted in black and vertical trees in color.

While orchards and grid-like minors have common features (note that the intersection
graph of the horizontal paths and vertical trees of an orchard is a complete bipartite graph),
in general they are incomparable objects. Orchards, and in particular a special type of or-
chards called tame orchards, are a key concept in the recent proof by PI Joret and his coau-
thors [12] of an optimal bound for the so-called Erdős-Pósa property of planar minors. The
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latter theorem was originally derived as a corollary of the Grid Minor Theorem by Robertson
and Seymour [50]. It is thus natural to expect that orchards, and other techniques from [12],
could be helpful in improving the existing bounds for the Grid Minor Theorem itself. This will
be the starting point of our investigations.

We remark that, while our ultimate goal is to achieve a tight upper bound on the treewidth
of graphs with no k × k grid minor, any improvement on the current best known bound of
O(k9 polylog(k)) [15] would already be a significant achievement.

2.4 Handling of research data

N/A

2.5 Relevance of sex, gender and/or diversity

N/A

3 Project- and subject-related list of publications
Works cited from sections 1 and 2, both by the applicant(s) and by third parties. Please include DOI/URL if
available. A maximum of ten of your own works cited may be highlighted; font at least Arial 9 pt.

[1] Tara Abrishami, Bogdan Alecu, Maria Chudnovsky, Sepehr Hajebi, and Sophie Spirkl.
Induced subgraphs and tree decompositions VIII. Excluding a forest in (theta, prism)-
free graphs. 2023. DOI: 10.48550/arXiv.2301.02138.

[2] Noga Alon, Jarosław Grytczuk, Mariusz Hałuszczak, and Oliver Riordan. “Nonrepet-
itive colorings of graphs.” In: Random Structures Algorithms 21.3-4 (2002), pp. 336–
346. DOI: 10.1002/rsa.10057.

[3] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. “Complexity of Finding
Embeddings in a k-Tree.” In: SIAM Journal on Algebraic Discrete Methods 8.2 (1987),
pp. 277–284. DOI: 10.1137/0608024.

[4] Albert Atserias and Elitza N. Maneva. “Sherali-Adams Relaxations and Indistinguisha-
bility in Counting Logics.” In: SIAM Journal on Computing 42.1 (2013), pp. 112–137.
DOI: 10.1137/120867834.

[5] Thomas G. Berry. “Points at rational distance from the vertices of a triangle.” In: Acta
Arithmetica 62.4 (1992), pp. 391–398. DOI: 10.4064/aa-62-4-391-398.

[6] Therese Biedl, David Eppstein, and Torsten Ueckerdt. On the complexity of embed-
ding in graph products. 2023. DOI: 10.48550/arXiv.2303.17028.

[7] Hans L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth.” In: SIAM Journal on Computing 25.6 (1996), pp. 1305–1317. DOI:
10.1137/S0097539793251219.

[8] Marthe Bonamy, Cyril Gavoille, and Michał Pilipczuk. “Shorter Labeling Schemes for
Planar Graphs.” In: SIAM Journal on Discrete Mathematics 36.3 (2022), pp. 2082–
2099. DOI: 10.1137/20M1330464.
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N/A

4.5 Researchers in Germany with whom you have agreed to cooperate on this project

N/A
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4.6 Researchers abroad with whom you have agreed to cooperate on this project

Cross-border cooperation in a weave lead-agency process:
Gwenaël Joret (Université libre de Bruxelles, Belgium) • Piotr Micek (Jagiellonian Univer-
sity, Krakow, Poland)

General international research cooperation:
Vida Dujmović (University of Ottawa) • Louis Esperet (G-SCOP Laboratory, Grenoble) •
Pat Morin (Carleton University) • David R. Wood (Monash University)

4.7 Researchers with whom you have collaborated scientifically within the past three
years

This information will help avoid potential conflicts of interest.

Therese Biedl • Steven Chaplick • Vida Dujmović • Zdeněk Dvořák • David Eppstein
• Louis Esperet • Stefan Felsner • Cyril Gavoille • Daniel Gonçalves • Michael
Kaufmann • Balázs Keszegh • Kolja Knauer • Stephen Kobourov • Pat Morin •
Sergey Norin • János Pach • Dömötör Pálvölgyi • Marcin Pilipczuk • Michał Pilipczuk
• Géza Tóth • Pavel Valtr • William T. Trotter • Bartosz Walczak • David R. Wood

4.8 Project-relevant cooperation with commercial enterprises
If applicable, please note the EU guidelines on state aid or contact your research institution in this regard.

N/A

4.9 Project-relevant participation in commercial enterprises
Information on connections between the project and the production branch of the enterprise

N/A

4.10 Scientific equipment
List larger instruments that will be available to you for the project. These may include large computer facilities if
computing capacity will be needed.

N/A

4.11 Other submissions
List any funding proposals for this project and/or major instrumentation previously submitted to a third party.

N/A

4.12 Other information
Please use this section for any additional information you feel is relevant which has not been provided else-
where.

N/A

5 Requested modules/funds
Explain each item for each applicant (stating last name, first name).

5.1 Basic Module

Ueckerdt, Torsten:
Basic Module
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5.1.1 Funding for Staff

Joret, Gwenaël:
one postdoctoral researcher, 100%, for 3 years. Total: C 157 500.

Micek, Piotr:
additional salary for PI, for 3 years. Total: C 22 860
one postdoctoral researcher, for 2 years. Total: C 59 267
scholarship for PhD student, for 2 years. Total: C 25 400
scholarship for Phd/MSc student, for 3 years. Total: C 22 860
In total: C 130 387

Ueckerdt, Torsten:
one postdoctoral researcher, 100%, for 3 years. Total: C 240 300.

Requirements for postdoctoral positions: PhD degree in mathematics or computer sci-
ence. Strong profile in theoretical computer science. Expertise in structural graph theory
and graph theory in general. Preferably, experience with the product structure.

Requirements for student positions: Excellent track record, interest in research and open
mind.

5.1.2 Direct Project Costs

5.1.2.1 Equipment up to C 10,000, Software and Consumables

Micek, Piotr:
Laptop or tablet: C 2 117.
Almost all paperwork is done on a laptop these days. A reliable laptop (or tablet) is

necessary to prepare manuscripts, presentations, and to participate in various planned and
ad-hoc research meetings.

5.1.2.2 Travel Expenses

Joret, Gwenaël:
Funds to cover transportation and conference fees: C 5 000 per year. Total: C 15 000.

Micek, Piotr:
Funds to cover transportation and conference fees: C 5 000 per year. Total: C 15 000

Ueckerdt, Torsten:
Funds to cover transportation and conference fees: C 5 000 per year. Total: C 15 000.

We plan a participation of each project member in one/two conferences per year (on av-
erage) with the purpose of presenting the results of the project and (in the case of students)
gaining the knowledge of current research trends. This is to include important conferences
in combinatorics and theoretical computer science (e.g. SODA, FOCS and STOC).

For the research visits the priority will always be to maintain high-quality research col-
laboration. Additionally, regular travel between the participating institutions is key to the
success of this international collaboration.

This includes flight tickets, accommodation, per diems, and fees. We estimate an aver-
age cost of one such business trip to be C 1 500 for Europe and C 2 500 outside Europe.
We allocate C 5 000 for each year of the project. This should cover about 2-4 such trips per
year.
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5.1.2.3 Visiting Researchers (excluding Mercator Fellows)

Micek, Piotr:
Funds to host visiting researchers: C 3 000 per year. Total: C 9 000.

Ueckerdt, Torsten:
Funds to host visiting researchers: C 4 000 per year. Total: C 12 000.

Hosting research visitors, colleagues, and guests is equally important to travelling. And
it is much cheaper. Among the intended research guests are: Zdeněk Dvořák (Charles
University), Stefan Felsner (TU Berlin), Louis Esperet (CNRS Grenoble), Patrice Ossona
de Mendez (CNRS Paris), David Wood (Monash, Melbourne), and many more. Estimated
cost of hosting one-week research visit in Kraków is C 900. For Karlsruhe it is C 1 200.

5.1.2.4 Expenses for Laboratory Animals

N/A

5.1.2.5 Other Costs

Micek, Piotr:
indirect costs: C 31 301
The default amount of indirect costs in research projects funded by NCN at Jagiellonian

University is 20%.

5.1.2.6 Project-related Publication Expenses

Micek, Piotr:
cost of Open Access: C 3 130
An obligatory item in research projects funded by NCN: 2% of the direct costs supporting

the Open Access actions.

5.1.3 Instrumentation

5.1.3.1 Equipment exceeding C 10,000

N/A

5.1.3.2 Major Instrumentation exceeding C 50,000

N/A

5.2 Module Temporary Position for Principal Investigator

N/A

5.3 Module Replacement Funding

N/A

5.4 Module Temporary Clinician Substitute

N/A
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5.5 Module Mercator Fellows

N/A

5.6 Module Workshop Funding

N/A

5.7 Module Public Relations Funding

N/A

5.8 Module Standard Allowance for Gender Equality Measures
Please detail what measures are planned to promote diversity and equal opportunities. If you are submitting
your proposal for an individual research grant within a network, note that this standard allowance may only
be applied for within the coordination project. The coordination project must combine all such requests in its
calculation.

N/A
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