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I. CORE DATA

1. Title of the Research Project

Order & Geometry

2. Acronym

Twelve characters maximum, same as the ones given in the ZSUN/OSF and ELAN submission
systems.

ORGEO

3. Name and affiliation of the Polish PI

Academic Title: Dr.

First Name: Piotr

Last Name: Micek

Host institution Main level:
Uniwersytet Jagielloński, Kraków

Host institution Faculty level:
Wydział Matematyki i Informatyki

Host institution Email address:
piotr.micek@tcs.uj.edu.pl

4. Name and affiliation of the German PI

Academic Title: Prof. Dr.

First Name: Stefan

Last Name: Felsner

Host institution Main level:
Technische Universität Berlin

Host institution Faculty level:
Fakultät II, Institut für Mathematik

Host institution Email address:
felsner@math.tu-berlin.de

5. Subject classification

In the case of an interdisciplinary project, please indicate the main discipline. Please refer to
NCN panels and DFG subject areas.

Mathematics
For NCN: ST1 Mathematics, ST1 14 Combinatorics
For DFG: Research Area 33 (Mathematics) Fachkollegium 312
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6. Keywords

Please submit at least one and at most six keywords separated by a semicolon

graph; poset; geometric representation; chi-boundedness; dimension

7. Project duration for which funding is requested

36 months

8. Summary

Research project objectives/research hypothesis; research project methodology; expected im-
pact of the research project on the development of science; added value of bilateral coopera-
tion; up to 1 page.

Graphs and orders defined by means of geometric objects provide a rich class of examples in com-
binatorics and graph theory. The geometric intuition often guides through constructions that are
complex and complicated otherwise. Moreover, graphs and orders defined in terms of geometric
objects model dependencies in optimization problems and theoretical computer science. Within
this project we focus on the combinatorial side of this realm. The research is grouped into three
lines and each line will be motivated by some notoriously open, long-standing problems such
as: (1) What is the best possible bound for the chromatic number of intersection graphs of axis-
aligned rectangles in the plane? (with essentially no progress since the seminal paper by Asplund
and Grünbaum in 1960); (2) Is the queue number of planar graphs bounded? (conjectured by
Heath, Leighton and Rosenberg in 1992); (3) Is the Boolean dimension of planar posets bounded?
(posed by Nešetřil and Pudlák in 1989).

These problems exemplify different types of interplay between orders (or orderings) and ge-
ometry in combinatorics. The basic concept of our research is to understand and exploit these
interplays.

II. RESEARCH TEAM

1. Research Team composition

Research Team members can be listed as Principal Investigators, Co-investigators, Post-docs,
scholarship grantees or technical staff.
Principal Investigators and Co-Investigators need to provide their CVs to be attached in the
appropriate sections of the ZSUN/OSF and ELAN system.
For Polish applicants: Please note that no personal data (names) for post-docs and scholarship
grantees should be included.
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German research team members:

Name and
academic title

Career
break

Host institution Percentage
share of the

overall
working

time
devoted to
the project

Participant
in another
proposal
within

DFG-NCN
call?

Stefan Felsner,
Prof. Dr.

no Technische Universität
Berlin

25%
(10h/week)
(36 months)

no

postdoc no Technische Universität
Berlin

100%
(40h/week)
(12 months)

no

PhD student no Technische Universität
Berlin

100%
(40h/week)
(36 months)

no

Further PhD students will also contribute and participate in research and exchange related to
the project.
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Polish research team members:

Principal Investigator, Co-investigators, Post- docs, scholarship grantees or technical staff.

Name and
academic title

Career
break

Host institution Percentage
share of the

overall
working

time
devoted to
the project

Participant
in another
proposal
within

DFG-NCN
call?

Piotr Micek, Dr. no Jagiellonian University 40%
(16h/week)
(36 months)

no

postdoc no Jagiellonian University 100%
(40h/week)
(12 months)

no

PhD student no Jagiellonian University 100%
(40h/week)
(36 months)

no

MSc student no Jagiellonian University 40%
(16h/week)
(36 months)

no

MSc student no Jagiellonian University 40%
(16h/week)
(36 months)

no
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2. Cooperation Partners

only persons who do not seek funding from NCN/DFG in this call; no CVs necessary

Name Affiliation Percentage
share of the

overall
working

time
devoted to
the project

Source of
funding

Jean Cardinal Université Libre de Bruxelles 3%
(1h/week)

own

Daniel Gonçalves CNRS & Université de Montpellier 3% own

Gwenaël Joret Université Libre de Bruxelles 6% own

Kolja Knauer Université Aix-Marseille 3% own

Patrice Ossona de
Mendez

EHESS, Paris 3% own

William
T. Trotter

Georgia Institute of Technology 6% own

Torsten Ueckerdt Karlsruher Institut für Technologie 3% own

Bartosz Walczak Uniwersytet Jagielloński, Kraków 3% own

III. DESCRIPTION OF THE RESEARCH PROJECT

1. Current knowledge in the field and preliminary work

Graphs and orders defined by means of geometric objects provide a rich class of examples in com-
binatorics and graph theory. The geometric intuition often guides through constructions that are
complex and complicated otherwise. Moreover, graphs and orders defined in terms of geometric
objects model dependencies in optimization problems and theoretical computer science. Within
this project we focus on the combinatorial side of this realm. The research is grouped into three
lines and each line will be motivated by some notoriously open, long-standing problems.

The most commonly studied geometrically defined graphs are containment graphs, intersection
graphs, and contact graphs. Containment graphs naturally come with a partial order relation but
posets also capture relevant structural aspects in many types of intersection and contact graphs.
We aim at exploiting these connections between geometrically defined graphs and orders. This is
a rather broad program, in the project description we focus on three more specific problem areas
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where the interplay of order and geometry is relevant, these are:

• Chi-bounded classes of geometrically defined graphs

• Geometrically defined classes of graphs with linear structure

• Geometry and encodings

Chi–bounded classes of geometrically defined graphs
Recall that χ(G) is the chromatic number of graph G and ω(G) is the clique number of G that is

the size of the largest clique in G. A class of graphs is χ-bounded, if there is a function f : N→ N
such that χ(G) 6 f (ω(G)) holds for any graph G from the class. Since there are triangle-free
graphs with arbitrarily large chromatic number χ-boundedness is a non-trivial property. In fact,
it constitutes a very lively field of research. E.g. Scott, Seymour et al. published a whole series of
papers (see e.g. [CSSS17]) containing, in particular, proofs of three long-standing conjectures of
Gyárfás [Gya87].

The study of χ-boundedness for geometric intersection graphs was ini-
tiated by Asplund and Grünbaum [AG60]. They proved that every fam-
ily F of axis-aligned rectangles in the plane satisfies χ(F ) 6 4ω(F )2−3ω(F ).
The proof uses a partial order on crossing rectangles and a degeneracy ar-
gument. For general families of axis-aligned rectangles, we do not know
much more than the result of Asplund and Grünbaum. The lower bound is
still linear and the upper bound was only modestly improved to χ(F ) 6 3ω(F )2 − 2ω(F ) − 1 by
Hendler [Hen98]. It is a true challenge to verify whether

• χ(F ) = o(ω2(F )), for every axis-aligned family F of rectangles.

For families F of rectangles with no containment between rectangles, Chalermsook [Cha11]
obtained χ(F ) = O(ω(F ) logω(F )). A linear bound for this specific case would also improve
the quality of the best known approximation algorithm for the Maximum-Independent-Set-of-

Rectangles problem (see [Cha11]).
Burling [Bur65] showed that triangle-free intersection graphs of axis-aligned boxes in R3 can

have arbitrarily large chromatic number. The graphs used for the construction are now known as
Burling graphs.

In the 1970s, Paul Erdős asked whether intersection graphs of line segments in the plane are
χ-bounded. A negative answer was provided by Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter,
and Walczak [PKK+14]: The authors represented Burling graphs as intersection graphs of seg-
ments in the plane. This result also disproves the conjecture of Scott [Sco97] that, for every graph
H , the class of graphs excluding every subdivision of H as an induced subgraph is χ-bounded.
More recently Burling graphs have been used to disprove a conjecture about orthogonal tree-
decompositions, see Dujmović et al. [DJM+18] and Felsner, Micek et al. [FJM+18]. Studying par-
ticular properties of Burling graphs is an exciting topic on its own and by now they have shown
the potential to test long-standing conjectures in graph theory.

The construction from [PKK+14] was extended in [PKK+13] to other shapes like axis-aligned
ellipses, rhombuses, L-shapes, etc. There is some evidence that unrestricted scaling in two direc-
tions is the key property, necessary to make the chromatic number large, while keeping the clique
number small. For instance, Suk [Suk14] proved that for families F of unit-length segments in the
plane χ(F ) is bounded by a double exponential function ofω(F ). Also families of curves attached
to a single line (outerstrings) have χ bounded in terms ofω, see a paper by Micek et al. [LMPW14]
and by Rok and Walczak [RW17].
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Interestingly, the complements of intersection graphs of segments in the plane are χ-bounded.
In that case, the chromatic number χ has been shown to be O(ω4) by Pach, Törőcsik et
al. [LJMT94]. The proof for this bound is a beautiful example of the interplay of orders and geom-
etry: four partial orders are defined on the family of segments, a four times repeated application
of Dilworth’s Theorem then yields the result. Pach, Tardos and Tóth [PTT17] show that the same
bound holds for the disjointness graph of segments in arbitrary dimension. Disjointness graphs
of curves in the plane have also been studied, they are not χ-bounded in general but as soon as
the curves are x-monotone and intersect the y-axis the precise χ-bounding function ω+1

2
(ω+2

3
)

has
been established by Pach and Tomon [PT18].

Kim, Kostochka and Nakprasit [KKN04] showed that families F , of homothetic copies of a
fixed convex compact set in the plane, have χ(F ) 6 6ω(F ). The result was generalized (with a
very simple counting argument) to pseudo-discs in [MP13]. A family F of simply connected sets
in the plane, is a family of pseudo-discs, if the boundaries of every two sets from F intersect in at
most two points. Micek and Pinchasi show that χ(F ) 6 19ω(F ) for families of pseudo-discs. It is
an annoying open problem to improve this bound for at least a tiny bit.

Geometrically defined classes of graphs and linear patterns
Interval graphs may be considered to be the best understood class of graphs with linear struc-

ture. This class was introduced by Benzer in 1959 [Ben59] and helped to understand the lin-
ear structure of the DNA. A second classical example are permutation graphs which are readily
described by a permutation (linear order) of the appropriately labelled vertices. Alternatively
permutation graphs can be described as intersection graphs of segments with endpoints on two
parallel lines. The modern theory of geometric intersection graphs was established in the 1990s
by Kratochvı́l [Kra91a, Kra91b] and Matoušek [Kra91a, Kra91b, KM91, KM94]. By now geomet-
ric intersection graphs are ubiquitous in discrete and computational geometry, and deep con-
nections to other fields such as complexity theory [SSv03, Sch09, Mat14] and order dimension
theory [CHO+14, Fel14, CFHW18] have been established.

A family F of geometric objects is called grounded if every element of F is contained in a half-
planeH and touches the boundary line ∂H ofH in an anchor point. Listing the objects according to
their anchor point gives a (canonical) linear ordering of the vertices. We have already mentioned
intersection graphs of grounded strings (outer strings) in the context of χ-binding.

Outer segment graphs form a natural subclass of outer string graphs. They also generalize the
class of circle graphs, which are intersection graphs of chords of a circle. Outerplanar graphs
form a proper subclass of circle graphs [WP85], hence of outer segment graphs. Cabello and
Jejčič [CJ17] proved that a graph is outerplanar if and only if its 1-subdivision is an outer seg-
ment graph. Intersection graphs of rays in two directions (a subclass of outer segment graphs,
see [CFHW18]) have been studied by Soto and Telha [ST11], they show connections with the
jump number of some orders and hitting sets of rectangles. The class has been further studied by
Shrestha et al. [STU10], and Mustaţă et al. [MNT+16].

Intersection graphs of L-shapes anchored at their bend has been investigated as hook-graphs
and as max point-tolerance graphs, see [Hix13], [CCF+17], and [ST15]. They generalize interval
graphs and have various geometric representations and characterizations, e.g., they can be seen
as intersection graphs of the rectangles spanned by the L’s. A direct proof of χ-boundedness for
this class (hopefully with a linear bound) would be of great interest. The recognition problem
for hook-graphs and even for the still simpler intersection graphs of grounded vertical and hor-
izontal segments (stick graphs) is also open. For the case where the order of anchor points on
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the grounding line is prescribed there is a polynomial recognition algorithm due to De Luca et
al. [LHK+18].

Stick graphs and many related bipartite intersection graphs have been studied by Felsner,
Hoffmann et al. [CFHW18]. The aim of that paper was to identify the inclusion order on the
graph classes and the order dimension turned out to be a very effective tool. Cardinal, Felsner et
al. [CFM+18] introduced the ‘Cycle Lemma’ which allows to prescribe the order of anchor points
for certain graphs. The lemma was used in [CFM+18] and [JT18] to separate further grounded
classes of graphs. Jelı́nek and Töpfer [JT18] also studied forbidden patterns. It had been observed
by several groups that hook-graphs can be characterized by a forbidden pattern on the anchor se-
quence of four vertices, see Figure 1. Jelı́nek and Töpfer show that grounded-L graphs, i.e., graphs
admitting an intersection representation by L’s anchored with the upper end of the vertical bar at
a horizontal line, admit a forbidden pattern characterization with two patterns on four vertices.
The characterization of a class of graphs by forbidden vertex order patterns might conceivably lay
the grounds for efficient recognition algorithms. Note, however, that a graph class characterized
by a forbidden vertex order pattern may have NP-hard recognition [DGR95]. On the other hand
Hell et al. [HMR14] unified many previous results by giving a general polynomial time recogni-
tion algorithm for all classes described by a set of forbidden patterns of order at most three.

comparability graphsinterval graphs hook graphschordal graphs

Figure 1: Forbidden order patterns for graph classes. Solid arcs denote compulsory edges and
dotted arcs denote compulsory non-edges.

Forbidden patterns are also at the core of important parameters studied for graphs and posets.
In a total order of the vertices of a graph, an independent pair of edges can be crossing, nested,
or disjoint. A k-stack layout (respectively, k-queue layout) of a graph consists of a total order of
the vertices, and a partition of the edges into k sets of pairwise non-crossing (respectively, non-
nested) edges. Motivated by numerous applications, stack layouts (also called book embeddings)
and queue layouts are widely studied, see e.g. a survey on stack and queue layouts by Dujmović
and Wood [DW04] and a survey vertex orderings in a broader context by Diaz et al. [DPS02].

When the vertex order is fixed, the minimum number of queues required for a queue layout
equals the maximum size of a nesting family of edges. Computing the minimum number of
stacks, however, is NP-hard even when the vertex order is prescribed. Despite intense research on
the parameters some of the problems and conjectures from the seminal paper by Heath, Lipton
and Rosenberg [HLR92] are still unresolved. Two central questions in the field are:

• Is the queue-number of planar graphs bounded?

• Is the stack-number or the queue-number bounded by a function of the other?

Nowakowski and Parker [NP89b] defined the stack-number of a poset as the stack-number of its
Hasse diagram viewed as a dag, i.e., the vertex ordering has to be a linear extension. They derive
a general lower bound on the stack-number of a planar poset and an upper bound on the stack-
number of a lattice. They conclude by asking

• whether the stack-number of the class of planar posets is unbounded.
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There have been some recent attacks to the problem, see e.g. Frati et al. [FFR13], still the question
in its general form remains open.

Heath and Pemmaraju [HP97] initiated the study of queue layouts of posets. Again, this is the
queue-number of the diagram of the poset, whence the vertex ordering has to be a linear extension.
They observe that the queue-number of the class of planar posets is unbounded, and bound the
queue-number of a planar poset in terms of its width. They conjecture that a poset of width w
has queue-number at most w. Knauer, Micek and Ueckerdt [KMU18] continue the study of the
queue-number of posets. They have shown that a planar poset of width w has queue-number at
most 3w − 2, while the bound on the queue-number for general posets remains O(w2).

Geometry and encodings
The most important measure for the complexity of a poset is its dimension. The dimension

dim(P ) of a poset P is the least integer d such that points of P can be embedded into Rd in such
a way that x 6 y in P if and only if the point of x is below the point of y with respect to the
product order of Rd . Though this definition justifies the geometric intuition behind the notion
of dimension, usually we work with the following equivalent. A realizer of a poset P is a set
{L1, . . . ,Ld} of linear extensions of P such that for every x,y ∈ P

x 6 y in P ⇐⇒ (x 6 y in L1)∧ · · · ∧ (x 6 y in Ld),

and the dimension of P is the minimum size of its realizer.
This reveals the second nature of the dimension: Realizers provide a way to succinctly encode

posets. Indeed if a poset is given with a realizer witnessing dimension d, then a query of the form
”is x 6 y?” can be answered by looking at the relative position of x and y in each of the d linear
extensions of the realizer. This application motivates the following more powerful encoding of
posets proposed by Nešetřil and Pudlák [NP89a] in 1989. The Boolean realizer of a poset P is a set
of permutations {L1, . . . ,Ld} of elements of P for which there exists a d-ary Boolean formula φ such
that

x 6 y in P ⇐⇒ φ((x 6 y in L1), . . . , (x 6 y in Ld)) = 1,

and the Boolean dimension of P , denoted bdim(P ), is the minimum size of its Boolean realizer.
Clearly, for every poset P we have bdim(P ) 6 dim(P ).

The usual dimension of a poset on n elements may be linear in n. Nešetřil and Pudlák showed
that Boolean dimension of posets on n elements is O(logn). They also provide an easy counting
argument showing that there are posets on n elements with Boolean dimension at least c logn for
some constant c.

A poset is planar if it has a planar diagram. Somewhat unexpectedly planar posets have arbi-
trarily large dimension. Kelly [Kel81] gave a construction that embeds the standard example Sn
of an n-dimensional poset as a subposet into a planar poset (see Figure 2). This shows that the
dimension of planar posets is unbounded. Still, the Boolean dimension of standard examples and
Kelly’s construction is at most 4. There is a beautiful open problem posed by Nešetřil and Pudlák
in [NP89a] that remains a challenge with essentially no progress over the years:

• Is the Boolean dimension of planar posets bounded?

We believe to have made an important step towards a resolution of the problem by proving that
posets with cover graphs of bounded treewidth have bounded Boolean dimension [FMM17]. This
stays in contrast to the ordinary dimension as Kelly’s examples have treewidth 3.
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Figure 2: The standard example S5 (left). Kelly’s planar poset containing an induced S5 (right).

Recently, Trotter and Walczak [TW17] studied the interplay of Boolean dimension with yet
another concept, the local dimension. They propose constructions of families of posets where one
of the parameters stays bounded while the other goes to infinity.

The usual dimension is known to be at most 3 for posets with cover graphs being forests (Trot-
ter, Moore [TM77]) and at most 1276 for posets with cover graphs of tree-width 2 (Joret et al.
[JMT+17]). As mentioned before, Kelly’s examples have tree-width 3 and arbitrarily large dimen-
sion. This certifies that Boolean realizers are capable to represent natural classes of posets that
are out of reach in the default setting.

It is tempting to speculate, whether the result from [FMM17] generalizes for broader classes of
sparse posets. Besides planar posets, it might be true even for posets whose cover graphs exclude a
fixed graph as a minor. On the other hand, we have an example (a subdivision of universal interval
orders) that this result does not hold for posets whose cover graphs exclude a fixed topological
minor. This line of research resembles the series of papers where poset dimension is bounded in
terms of the height for posets whose cover graphs are planar (Streib and Trotter [ST14]), or have
bounded tree-width (Micek et al. [JMM+16]), or exclude a fixed graph as a minor (Walczak [Wal17]
and Micek, Wiechert [MW15], or belong to a fixed class with bounded expansion (Micek et al.
[JMW17]).

By now Boolean dimension is not yet well understood. In particular we lack lower bound tech-
niques. We even got stuck on the following easy looking question

• Is the Boolean dimension of a Boolean lattice of order n equal n?

If it is true we expect that there is a beautiful combinatorial argument behind it. See [KMM+18]
for similar considerations concerning local dimension.

2. Objectives

In the preceding section we have reviewed some of the connections between order structures and
geometric situations and the history of this research. Below we list some hard problems which
serve as landmarks for our research. Impact on other problems can be expected even from partial
solutions. To make progress on the problems we will have to combine the expertise in structural
graph theory and extremal combinatorics from the Kraków side and the experience in working
with geometrically defined graphs and orders from the Berlin side.

I. Chi-bounded classes of geometrically defined graphs.

10



I.1 Improve asymptotic bounds for the chromatic number of families of axis-aligned rectangles
in terms of their clique-number, i.e. the upper bound O(ω2) by Asplund and Grünbaum
from 1960 and/or the trivial but still best known lower bound O(ω). Improve the bounds
for special cases e.g. families of rectangles with no containment.

I.2 Improve theO(ω4) bound for complements of intersection graphs of segments in the plane.

I.3 Study properties and geometric representations of Burling graphs.

II. Geometrically defined classes of graphs with linear structure.

II.1 Find a polynomial time recognition algorithm for stick graphs, i.e., grid intersection graphs
with upper-left endpoint on the diagonal line. Or show that the problem is NP-complete.

II.2 Identify forbidden patterns of length four such that the corresponding class of graphs is
easy to recognize.

II.3 Prove or disprove that the queue-number of planar graphs bounded. Improve the bounds
for queue-numbers of planar posets. Prove or disprove that the stack-number of planar
posets is bounded.

III. Geometry and encodings.

III.1 Solve or give some substantial partial solutions for a problem posed by Nešetřil and Pudlák
(1989): Is the Boolean dimension of planar posets bounded?

III.2 Verify if the Boolean dimension of a Boolean lattice of order n is equal n?

3. Work Programme

Work Programme including proposed research methods, role of the participating research
team members and added value of international cooperation

The nature of the proposed problems requires them to be tackled in cooperation of at least
two team members: they are chosen at common borders of the scientific expertise of the involved
research groups.

Our two teams have a long history of collaboration dating back to 2006 and including multiple
shorter and long-term visits in both directions. In particular Piotr Micek was visiting the group of
Felsner from 2013 to 2015 with Mobility Plus fellowship and in the fall of 2016 he was in Berlin as
a substitute professor of Berlin Mathematical School. Stefan Felsner has been awarded a Alexan-
der von Humboldt Polish Honorary Research Scholarship by the Foundation for Polish Science for
a period of 5 months to be spent at Jagiellonian University. Piotr Micek and Stefan Felsner have
jointly established the series of Order & Geometry workshops with events in 2013 (Berlin), 2016
(Gułtowy Palace), and 2018 (Cia̧żeń Palace). By now there are at least 15 joint research papers
between the groups (just counting those with at least one of the principal investigators as a co-
author). Many papers are published in the top journals in combinatorics (Combinatorica, SIAM
Journal on Discrete Mathematics, Journal of Graph Theory, Discrete & Computational Geome-
try). Usually the Berlin team contributes the expertise in geometric aspects of representations of
graphs and posets while the Kraków team accounts for its strong background in structural graph
theory and algorithms. Undoubtedly, the present project will further strengthen the ties between
the research groups from Berlin and Kraków.

The problems listed in the objectives section can serve for the doctoral students as entry points
to their thesis projects. All (MSc-, PhD-) students within the project will be supervised jointly by
both principal investigators. The PhD students are expected to spend at least three months at the
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respective collaborating institution. Additionally, some less ambitious projects can be offered to
students preparing MSc theses in each of the collaborating teams. We also plan to offer exchange
possibilities to MSc students. The postdoctoral researcher is to help getting momentum for the
project in the first two years. Ideally the postdoctoral researcher should spent one year in Berlin
and one year in Kraków.

We expect that the the Order & Geometry workshop in the Fall of 2020 will have major impact
on the project . The workshop will be a reunion of the cooperation partners and additional experts
in the field. Focusing the workshop on the problems of the project should lead to substantial
progress. Previous workshops with this title in 2013, 2016, and 2018 have been very successful,
e.g. the workshop of 2016 layed ground for research that directly lead to at least 5 publications,
moreover, the fresh interest for local dimension and Boolean dimension of posets was the result
of a very exciting final problem session at the workshop.

In the following sections we discuss our research plan in each of the three highlighted direc-
tions. We have some preliminary results which may serve as a nucleus for the research, real
progress, however, has to be generated from new and creative ideas.

I. Chi-bounded classes of graphs.

Improving the upper bound for the chromatic number of families of axis-aligned rectangles in
the plane in terms of their clique-number is one of the highlights of the project. We expect this
to be difficult. So far there is no idea working for general families of rectangles different from
the original Asplund and Grünbaum approach [AG60]. The best known lower bound, i.e. 3ω, is
due to Kostochka but he never published his argument. We were able to reprove the same bound
using Burling graphs. This might be a good starting point for more sophisticated constructions.
From the upper bound side we have an idea to try to apply the iterative breadth-first search
(BFS) technique that was proved to be very useful in arguments bounding the chromatic number
(especially when some induced subgraph is forbidden). In short, the idea is to launch BFS on a
given intersection graph and divide vertices into layers. Now the folklore result is that when the
chromatic number of each layer is at most d, then the chromatic number of the whole graph is at
most 2d. Iterating BFS and narrowing to sublayers we finally may be able to use some geometric
properties of our graphs to bound the chromatic number.

Another approach is to start with a result by Chalermsook, in [Cha11]. He proved a bound
which applies to general families of rectangles. This bound is of order O(ωγ logω) with γ being
a rather un-intuitive parameter 1 6 γ 6 ω. Simplifications of the algorithm may lead to better
bounds for γ . As for simplifications, we plan to find simpler O(ω logω) (or ideally O(ω)) algo-
rithms in special situations, e.g., when all rectangles are stabbed by a line, or even more restricted,
when a line contains all upper-left corners of rectangles in the family.

A more general problem is to get a better understanding of properties that imply χ-
boundedness. Families of pseudo-discs are χ-bounded and there are families of nice 64-
intersecting objects that are unbounded. However, axis aligned rectangles are 64-intersecting
and again χ-bounded. Is there a definition of pseudo-rectangles which implies χ-boundedness?

The O(ω4) bound for the complements of intersection graphs of segments in the plane was
established by Pach, Törőcsik et al. [LJMT94] using four partial orders and four applications of
Dilworth’s Theorem. In a very recent paper Pach and Tomon [PT18] obtain the same bound for
disjointness graphs of x-monotone curves. Moreover they provide a lower bound of Ω(ω4) for this
class. Hence, it seems that an improved bound for segments has to take advantage of straightness,
usually this is a very hard task. However, the lower bound construction of [PT18] is using curves

12



with multiple intersections. If we restrict to x-monotone pseudosegments, i.e. curves which inter-
sect at most once, we may be able to improve the bound. At this point it would be an exaggeration
to claim that we have an idea of how to prove a bound in this setting. But we have some experience
in working with pseudolines and pseudosegments and look forward to fight with this problem.

Burling graphs are fascinating and we still feel that we do not have a full understanding of their
structural properties. One concrete example that we have in mind is the presence of induced sub-
divisions of K5. Let us bring some context. Scott [Sco97] conjectured in 1997 that for every graph
H , the class defined by excluding all subdivisions of H as induced subgraphs is χ-bounded. We
disproved this conjecture [PKK+14] when we showed that Burling graphs are segment intersec-
tion graphs. Indeed, they are triangle-free, they have arbitrarily large chromatic number and
since they are segment intersection graphs they do not contain an induced subdivision of a 1-
subdivided K5 (or of any other 1-subdivided non-planar graph). Thus, Scott’s conjecture is false
for a 1-subdivision of any non-planar graph. Very recently Chalopin et al. (see [CELdM16]) were
trying to understand for which graphs the Scott conjecture is true. It still remains open if it is true
for K5. We believe that Burling graphs do not contain an induced K5 nor any subdivision of K5.
This would imply that the class of all graphs which contain no induced subdivision of K5 is not
chi-bounded.

II. Geometrically defined classes of graphs with linear structure.

Regarding the recognition complexity of stick graphs we have no clue whether we should expect
that the problem is in P or is NP-complete. We will try in both directions. If a linear order of the
vertices is prescribed, then it is easy to decide whether a corresponding stick representation exists.
A valid linear order has to be a linear extension of the graph seen as a bipartite poset. To find an
appropriate linear extension some kind of ‘forcing relation’ is needed. In [CFHW18] we have
shown that induced cycles have a unique stick representation up to the choice of an extreme edge.
We will study the connections of extreme edges for interfering cycles. With the help of computers
we will identify other small graphs which have an essentially unique stick representation or no
stick representation at all. Such structures can help to find appropriate forcing relations or to
build gadgets for an NP-completeness proof. Another approach to the problem is to start with
a result of Hell, Mohar, and Rafiey [HMR14] which implies that the superclass of bipartite hook
graphs is polynomial time recognizable, just because the class is characterized by a forbidden
pattern of length four (see Figure 1). We will try to strengthen the algorithm from [HMR14] as to
avoid the use of hooks which have neighbors on both sides in the resulting representation.

Hell, Mohar, and Rafiey [HMR14] have shown that all graph classes defined by the existence of
a vertex ordering avoiding a set of patterns of length three are recognizable in polynomial time.
The situation for patterns of length four is more involved. Faber [Fab83] has shown that strongly
chordal graphs are polynomially recognizable and that they are characterized by a set of patterns
of length four. On the other hand graphs with χ 6 3 are characterized by a a set of patterns of
length four and their recognition is NP-complete. We will investigate whether for some classes
it is helpful that the subclass of bipartite graphs can be recognized efficiently. Special focus will
be put on hook-graphs and grounded L-intersection graphs (cf. [JT18] for this class). We will use
computers to identify small graphs which have an essentially unique vertex ordering avoiding
the forbidden patterns and to identify some minimal graphs which are forbidden as induced
subgraphs in the class. As in the case of stick graphs such structures can help in the design of
recognition algorithms as well as in the construction of gadgets for an NP-completeness proof.
An intriguing question in the area is due to Duffus et al. [DGR95], they conjecture that every class

13



defined by a single 2-connected pattern (other than a complete graph) yields an NP-complete
recognition problem. On four vertices there are only 9 instances. Maybe one of them can serve as
a counterexample to the conjecture.

The conjecture of Heath, Leighton and Rosenberg that the queue number of planar graphs is
constant is a real challenge. The conjecture has been settled in the positive for several subfamilies
of planar graphs. Recent remarkable progress is due to Bekos, Ueckerdt et al. [BFG+18], they
show that planar graphs of bounded degree have constant queue number. We have no real plan
for attacking the general problem but we will try to combine ideas from [BFG+18] with techniques
related to vertex orderings under constrains. This research will be carried out in close cooperation
with Torsten Ueckerdt.

Stack layouts for posets have not been studied intensively. Sysło [Sys90] relates the stack-
number with two other parameters, the jump- and the bump-number. It would be a nice master’s
thesis to study (experimentally) the performance of a local optimization algorithm which walks
through linear extensions by performing adjacent flips. To attack the problem for planar posets
we will first look at planar posets with 0 and 1, i.e., planar lattices. Structural insights from this
study will guide further research.

Regarding the queue number of planar posets there are recent results by Knauer, Micek and
Ueckerdt [KMU18]. Building on their examples we expect to be able to prove the conjecture of
Heath and Pemmaraju for planar posets and possibly to disprove it for general posets.

III. Geometry and encodings.

We believe that we are in a privileged position to attack the old question of Nešetřil and
Pudlák: Is the Boolean dimension of the planar posets bounded? Only recently Felsner, Micek
and Mészáros [FMM17] proved that posets with cover graphs of bounded treewidth have bounded
Boolean dimension. There are several new techniques buried in the proof of that result. They
mainly make use of tree-like structures. The key to the planar case will be to develop similar
techniques for grid-like structures. Another tool we keep in mind is the so-called unfolding of a
poset (introduced by Streib and Trotter [ST14]). On the level of intuitions it works as follows: if
a poset has large dimension, then it has a ‘local’ subposet which still has large dimension. This
type of statement has a very simple and descriptive analogue in the world of graphs: if a graph G
is connected and χ(G) > 2k, then at least one distance level L (considered from any fixed vertex
v) satisfies χ(G[L]) > k. The ‘locality’ stems from the fact that in many cases (e.g. in minor-closed
classes of graphs and specifically in the planar case) we can handle all the previous distance levels
as if they were a single vertex.

We actually believe in the negative resolution of the question. Our strategy while working on
this problem will be to push forward towards a positive resolution while observing the types of
structures which remain unresolved. This may lead to a construction witnessing the negative
resolution.

The question about Boolean dimension of the Boolean lattice of order n seems to be an innocent
one. We have shared this problem over last two years with our colleagues all over the world. The
exciting part is that the answer could be exactly n, which is a trivial upper bound. So far the best
bound we (Felsner, Micek) have from the lower bound side is Ω(n/ logn). We do it with a short but
relatively tricky counting argument. We are planning to push this idea up to its limits. Possibly,
we will run some computational experiments testing the conjecture for small values of n.
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[FMM17] S. Felsner, T. Mészáros, and P. Micek, Boolean dimension and tree-width, arXiv
1707.06114 (2017), 16 pages.

[Gya87] A. Gyarfás, Problems from the world surrounding perfect graphs, Proc. Int. Conf. on
Comb. Analysis and its Appl., Zastos. Mat., vol. 519, 1987, 413–441.

[Hen98] C. Hendler, Schranken für Färbungs – und Cliquenüberdeckungszahl geometrisch re-
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czak, Triangle-free geometric intersection graphs with large chromatic number, Discr.
and Comput. Geom. 50 (2013), 714–726.

17

arXiv:1312.1678v2
arXiv:1312.1678v2


[PKK+14] A. Pawlik, J. Kozik, T. Krawczyk, M. Lasoń, P. Micek, W. T. Trotter, and B. Wal-
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