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Abstract. Ohba conjectured that every graph G with |V (G)|6 2χ(G)+1 has
its choice number equal its chromatic number. The on-line choice number of a

graph is a variation of the choice number defined through a two person game,
and is always at least as large as its choice number. Based on the result that for

k > 3, the complete multipartite graph K2?(k−1),3 is not on-line k-choosable,

the on-line version of Ohba’s conjecture is modified in [P. Huang, T. Wong

and X. Zhu, Application of polynomial method to on-line colouring of graphs,

European J. Combin., 2011] as follows: Every graph G with |V (G)| 6 2χ(G)
has its on-line choice number equal its chromatic number. In this paper, we

prove that for any graph G, there is an integer n such that the join G + Kn

of G and Kn has its on-line choice number equal chromatic number. Then we

show that the on-line version of Ohba conjecture is true if G has independence

number at most 3. We also present an alternative proof of the result that
Ohba’s conjecture is true for graphs of independence number at most 3 and an

alternative proof of the following result of Kierstead: For any positive integer k,

the complete multipartite graph K3?k has choice number d(4k−1)/3e. Finally,

we prove that the on-line choice number of K3?k is at most 3
2
k. The exact

value of the on-line choice number of K3?k remains unknown.

1. Introduction

A list assignment of a graph G is a mapping L which assigns to each vertex v a
set L(v) of permissible colours. An L-colouring of G is a proper vertex colouring
of G which colours each vertex with one of its permissible colours. We say that G
is L-colourable if there exists an L-colouring of G. A graph G is called k-choosable
if for any list assignment L with |L(v)| = k, for all v ∈ V (G), G is L-colourable.
More generally, for a function f : V (G)→ N, we say G is f -choosable if for every
list assignment L with |L(v)| = f(v), G is L-colourable. The choice number ch(G)
of G is the minimum k for which G is k-choosable. List colouring of graphs has
been studied extensively in the literature [21, 3, 20].

A list assignment of a graph G can be given alternatively as follows: Without
loss of generality, we may assume that ∪v∈V (G)L(v) = {1, 2, . . . , q} for some inte-
ger q. For i = 1, 2, . . . , q, let Vi = {v : i ∈ L(v)}. The sequence (V1, V2, . . . , Vq) is
another way of specifying the list assignment. An L-colouring of G is equivalent
to a sequence (X1, X2, . . . , Xq) of independent sets that form a partition of V (G)
and such that Xi ⊆ Vi for i = 1, 2, . . . , q. This point of view of list colouring mo-
tivates the definition of the following list colouring game on a graph G, which was
introduced in [18, 17].

Definition. Given a finite graph G and a mapping f : V (G)→ N, two players play
the following game. In the i-th step, Player A chooses a non-empty subset Vi of
V (G), and Player B chooses an independent set Xi contained in Vi. A vertex v is
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coloured before the ith step if v ∈ Xj for some j < i, and is finished before the ith
step if v is contained in f(v) of the Vj’s with j < i. When Player A chooses the
set Vi, it is required Vi contains only uncoloured non-finished vertices. If for some
integer m, before the m-th step, there is a finished vertex v that is uncoloured, then
Player A wins the game. Otherwise, at some step, all vertices are coloured. In this
case, Player B wins the game.

We call such a game the on-line (G, f)-list colouring game. We say G is on-line
f -choosable if Player B has a winning strategy in the on-line (G, f)-list colouring
game, and we sayG is on-line k-choosable ifG is on-line f -choosable for the constant
function f ≡ k. The on-line choice number of G, denoted by chOL(G), is the
minimum k for which G is on-line k-choosable.

It follows from the definition that for any graph G, chOL(G) > ch(G). There are

graphs G with chOL(G) > ch(G) (see [22]). It remains a challenging open problem

whether the difference chOL(G)−ch(G) can be arbitrarily large. Alon [1] proved that

if ch(G) 6 k then its colouring number col(G) is at most f(k) = 4
(
k4

s

)
log2(2

(
k4

k

)
).

This gives us an exponential bound for the on-line choice number of G in terms of
its choice number

f(ch(G)) > col(G) > chOL(G).

Many currently known upper bounds for the choice number of a graph remain
upper bounds for its on-line choice number. For example, the on-line choice number
of planar graphs is at most 5 [17], the on-line choice number of planar graphs of
girth at least 5 is at most 3 [17, 2], the on-line choice number of the line graph L(G)
of a bipartite graph G is ∆(G) [17], and if G has an orientation in which the number
of even eulerian subgraphs differs from the number of odd eulerian subgraphs and
f(x) = d+(x) + 1, then G is on-line f -choosable [18].

A graphG is called chromatic-choosable (respectively, on-line chromatic-choosable)

if χ(G) = ch(G) (respectively, χ(G) = chOL(G)). The problem which graphs are
chromatic-choosable has been extensively studied. A few well-known classes of
graphs are conjectured to be chromatic-choosable. These include line graphs (con-
jectured independently by Vizing, by Gupta, by Albertson and Collins, and by
Bollobás and Harris, see [6] and [9]), claw-free graphs [5], and square of graphs [13],
etc. It is proved by Galvin [4] that the line graph of a bipartite graph is always
chromatic-choosable. As observed by Schauz [17], the same proof works for on-line
list colouring as well. So the line graph of a bipartite graph is on-line chromatic-
choosable. In this paper, we are interested in Ohba’s conjecture [14], which also
concerns chromatic-choosable graphs.

Conjecture 1 (Ohba 2002). If |V (G)| 6 2χ(G) + 1, then χ(G) = ch(G).

Some special cases of Ohba’s conjecture are already verified. Reed and Sudakov
[16, 15] proved that it holds for all graphs G with |V (G)| 6 5

3χ(G) − 4
3 and soon

afterwards they gave an asymptotic-type result that for any ε > 0 there is an integer
n0 such that all graphs with n0 6 |V (G)| 6 (2 − ε)χ(G) are chromatic-choosable.
Recently, Kostochka et al. (see [12]) proved that Conjecture 1 holds for all graphs
with independence number at most 5 which improves the results of [7, 19].

Note that it suffices to consider the conjecture only for complete multipartite
graphs. Suppose k = k1 +k2 + . . .+ks, and n1, n2, . . . , ns are positive integers. We
denote by Kn1?k1,n2?k2,...,ns?ks the complete k-partite graph in which ki parts are
of cardinality ni for i = 1, 2, . . . , s. If ki = 1, then ni ? 1 in the subscript will be
shortened as ni (for example K3,2?3 = K3?1,2?3).

It is proved in [11] that for k> 2, the graph K3,2?k is not on-line (k+1)-choosable.
However, experiments and preliminary results show that a slightly modified version
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of Ohba’s conjecture might be true in the on-line case. The following conjecture is
proposed in [8].

Conjecture 2. If |V (G)| 6 2χ(G), then χ(G) = chOL(G).

The on-line version of Ohba’s conjecture seems to be more difficult to handle. Some
of the key technique used in the study of Ohba’s conjecture do not apply to the
on-line version. For example, it is easy to prove that K2?k is k-choosable. However,
all the previously known proofs of this result use Hall Theorem, and this cannot
be directly applied to the on-line version. In [8], the method of Combinatorial
Nullstellensatz is used to prove that K2?k is k-choosable. By a result of Schauz
mentioned above, this implies that K2?k is on-line k-choosable. Recently, a simple
strategy was given in [11] for Player B to win this on-line (G, f)-colouring game.

By using Combinatorial Nullstellensatz, K`+1,1?(`−1),2?(k−`), Ks,t,1?(k−2) (where
(s − 1)(t − 1) 6 2k − 3), K3?2,1?2,2?(k−4) and K4,3,1?3,2?(k−5) are shown in [8] to
be on-line k-choosable. Still, we know much less about Conjecture 2 than about
Conjecture 1.

The main focus of this paper is the on-line version of Ohba’s conjecture. We
prove that for any graph G, by adding enough universal vertices, the resulting
graph is on-line chromatic-choosable. I.e., for a sufficiently large integer n, the join
G + Kn of G and Kn is on-line chromatic-choosable. In fact the argument gives
that χ(G) = chOL(G) for all graphs G with |V (G)| 6 χ(G) +

√
χ(G). Then we

prove that Conjecture 2 is true for graphs with independence number at most 3,
and also give an alternate proof of the result that Conjecture 1 is true for graphs
with independence number at most 3.

We finish with the discussion on the choice number and on-line choice number
of K3?k. These graphs are natural candidates to prove a hypothetic separation
(by more than a constant) of choice number and on-line choice number. With an
ingenious argument, Kierstead proved in [10] that ch(K3?k) 6 d(4k − 1)/3e. This
result matches the lower bound given by Erdös, Rubin and Taylor [3]. We prove

that chOL(K3?k) 6 3
2k, and present an alternative proof of Kierstead’s result.

2. The join of G and Kn

We are going to prove here that for any graph G, by adding enough universal
vertices, one can construct a graph that is on-line chromatic-choosable. For two
graphs G and G′, the join of G and G′, denoted by G + G′ is the graph obtained
from the disjoint union of G and G′ by adding all the possible edges between V (G)
and V (G′).

Theorem 3. For every graph G there exists a positive integer n such that χ(G +
Kn) = chOL(G+Kn).

Proof. Without loss of generality, we may assume that G is a complete χ(G)-partite
graph. Let us start with an easy observation (see [17]): Assume H is a graph and
f : V (H)→ N is a function. If f(v) > dH(v) + 1 for a vertex v ∈ V (H), then

H is on-line f -choosable if and only if H − v is on-line f -choosable.

For a given graph G, we put H0 =G+Kn with n= |V (G)|2 and f(v) = χ(H0) =
χ(G) + n for all v ∈ V (H0). Let V1, . . . , Vχ(H0) be a partition of V (H0) into inde-
pendent sets. We are going to present a winning strategy for Player B in the on-line
(H0, f)-list colouring game.

We denote by Hi a subgraph of all uncoloured vertices of H0 after i steps. Before
playing the (i + 1)-th step, we delete from Hi, one by one, all the vertices v with
f(v) > dHi

(v) + 1 (by using the observation above). The resulting graph is still
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denoted by Hi. Now, by a part of Hi we mean a non-empty set of the form Vj ∩Hi

for 1 6 j 6 χ(H0). Assume at the (i + 1)th step, Player A chooses a subset Ui.
Player B finds an independent set I contained in Ui according to the following
algorithm.

Algorithm 1: Strategy for Player B in the (i+ 1)-th step

1 if there is a part V of Hi with |V | > 2 and V ⊆ Ui then
2 pick I = V

3 else if there is a part V of Hi with |V | = 1 and V ⊆ Ui then
4 pick I = V

5 else
6 pick I to be any maximal independent set in Ui

For v ∈ V (G∩Hi), let fi(v) be the number of remaining colours for v just before
the (i + 1)th step, and define the deficit of v as dHi

(v) + 1 − fi(v), which is the
number of additional colours needed so that v can be removed from the graph
(by the observation we started with). Since vertices v with fi(v) > dHi

(v) + 1 are
removed, we know that the deficit of each vertex v is positive. The deficit of a part
V of Hi is the sum of deficits of its vertices∑

v∈V
(dHi

(v) + 1− fi(v)).

We will show that after every step of the game the deficit of each part of size at
least 2 decreases. Let V be a part of Hi and |V | > 2.

If line 2 is executed, then either part V is picked and it disappears in Hi+1, or
dHi+1

(v) 6 dHi
(v) − 2 and fi+1(v) > fi(v) − 1 for all v ∈ V . Hence the deficit of

each vertex of V decreases.
If line 4 is executed, then dHi+1(v) = dHi(v)−1, fi+1(v)> fi(v)−1 for all v ∈ V ,

and there exists v ∈ V with fi+1(v) = fi(v) as V is not contained in Ui+1. So the
total deficit of V decreases.

Assume line 6 is executed. If I =V ∩Ui+1, then dHi+1
(v) = dHi

(v), fi+1(v) = fi(v)
for all v ∈ V −Ui+1 so the sum decreases as the deficit of erased vertices is positive.
Otherwise, dHi+1(v) 6 dHi(v) − 1 and fi+1(v) > fi(v) − 1 for all v ∈ V and there
exists v ∈ V with fi+1(v) = fi(v). So the deficit of V decreases.

As each v ∈ V (H0) has deficit bounded by |V (G)|, each part has initially deficit

bounded by n = |V (G)|2. Since after each step the deficit of each part of size at
least 2 decreases and vertices with non-positive deficit are deleted, after n rounds
the remaining graph, namely Hn, forms a clique.

The vertices in Hn may come from G or Kn and there are at most χ(G) vertices
coming from G, at most one for each part of G. If Ui ∩Kn 6= ∅ then the number of
parts in Hi+1 decreases by 1 comparing to the number of parts in Hi (as line 2 or
4 is executed). Therefore

fn(v) > the number of parts in Hn = dHn(v) + 1 for all v ∈ Hn ∩Kn

For vertices v ∈ Hn ∩G, as each step decreases the number of permissible colours
by at most 1, we have fn(v) > f0(v) − n = χ(G). By applying the observation
repeatedly, these inequalities certify that all vertices of Hq are removed and Hq is
empty, which finishes the proof. �

The argument presented gives also an Ohba-like statement with much more
restricted constraint on the size and the chromatic number of a graph.

Corollary 4. If |V (G)| 6 χ(G) +
√
χ(G), then χ(G) = chOL(G).
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3. A lemma

In the remainder of this paper, we consider complete multipartite graphs of inde-
pendence number at most 3, i.e., graphs of the form K3?k3,2?k2,1?k1 for some integers
k1, k2, k3 > 0. Lemma 5 below specifies a sufficient condition for such a graph G to
be on-line f -choosable. In further sections we are going to derive from this a few
quite independent results.

For a subset U of V (G), let δU : V (G) → {0, 1} be the characteristic function
of U , i.e., δ(x) = 1 if x ∈ U and δU (x) = 0 otherwise. The following observation
follows directly from the definition of the on-line (G, f)-colouring game (see [17]).

Observation. If G is an edgeless graph and f(v) > 1 for all v ∈ V (G), then G is
on-line f -choosable. If G has at least one edge, then G is on-line f -choosable if and
only if for every U ⊆ V (G), there is an independent set I of G such that I ⊆ U and
G− I is on-line (f − δU )-choosable.

Lemma 5. Let G be a complete multipartite graph G with each part of size at most
3. Let A,B, C,S be a partition of the set of parts of G into classes such that A
contains only parts of size 1, B contains only parts of size 2, C contains only parts
of size 3 and S contains parts of size 1 or 2. Let k1, k2, k3, s denote the cardinalities
of classes A,B, C,S, respectively. Suppose that classes A and S are ordered i.e.
A = (A1, . . . , Ak1) and S = (S1, . . . , Ss). For 1 6 i 6 s, let vS(i) =

∑
16j<i |Si|+ 1.

Assume f : V (G)→ N is a function for which the following conditions hold

f(v) > k3 + k2 + i, for all 1 6 i 6 k1 and v ∈ Ai (1)

f(v) > 2k3 + k2 + k1 + vS(i), for all 1 6 i 6 s and v ∈ Si (1’)

f(v) > k3 + k2, for all v ∈ B ∈ B (2.1)∑
v∈B

f(v) > |V (G)|, for all B ∈ B (2.2)

f(v) > k3 + k2, for all v ∈ C ∈ C (3.1)

f(u) + f(v) > |V (G)| − 1, for all u, v ∈ C ∈ C, u 6= v (3.2)∑
v∈C

f(v) > |V (G)| − 1 + k3 + k2 + k1, for all C ∈ C. (3.3)

Then G is on-line f -choosable.

Proof. The proof goes by induction on |V (G)|. If G is edgeless, i.e., k1+k2+k3+s=
1, then G is on-line f -choosable as f(v) > 1 for all v ∈ V (G). Assume now that G
has at least two parts and that the statement is verified for all smaller graphs.

Given U ⊆ V (G), we shall find an independent set I of G such that I ⊆ U
and G − I is on-line (f − δU )-choosable. Let G′ = G − I and f ′ = f − δU . Note
that f ′(v) > f(v)− 1 for all v ∈ V (G). Clearly, G′ is also a complete multipartite
graph with each part of size at most 3. We are going to show that G′ with f ′, an
appropriate partition A′,B′, C′,S ′ and orderings of A′ and S ′ fulfill the conditions
of Lemma 5. Hence, by induction hypothesis G′ is on-line f ′-choosable.

The strategy of choosing an independent set I is given by the case distinction.
Note that we consider the setting of Case i only when the conditions for all i − 1
previous cases do not hold. When we verify the inequalities from the statement
of Lemma 5 for G′ and f ′ we usually compare the total decrease/increase of left
and right hand sides with the analogous inequalities that hold for G and f . The
notation for the parts of G′ and its sizes is analogous as for G, e.g. A′i, S

′
i, k
′
1, s′

and so on. Partition A′,B′, C′,S ′ and orders on the classes A′ and S ′ are usually
inherited. In the case distinction below we comment the partitions only if the order
or partition changes in the considered step.
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Case 1. C ⊆ U for some C ∈ C.
Put I = C. Then k′3 = k3 − 1 and all other parameters remain the same. Note

that |V (G′)| = |V (G)| − 3. Now, it is immediate that G′ with inherited partition
and f ′ satisfy the conditions of Lemma 5.

Case 2. B ⊆ U for some B ∈ B.

Put I = B. Then k′2 = k2 − 1 and all other parameters remain the same. Note
that |V (G′)| = |V (G)| − 2. Again, it is immediate that G′ with inherited partition
and f ′ satisfy the conditions of Lemma 5. Note that because Case 1 does not apply,
for inequality (3.3), the left-hand side decreases by at most 2.

In all remaining cases, as conditions for cases 1 and 2 do not hold, we have

(i) U covers at most one vertex in each B ∈ B (we are not in Case 2). This
implies that inequalities (2.2) for any G′ will trivially hold provided |V (G′)|6
|V (G)| − 1.

(ii) U covers at most two vertices in each C ∈ C (we are not in Case 1).

Case 3. There is C ∈ C with U ∩ C = {u, v} and (3.1) is saturated for v or (3.2)
is saturated for u and v.

Let C = {u, v, w}. Put I = {u, v}. Then k′3 = k3 − 1, k′1 = k1 + 1 and all
other parameters remain unchanged. Indeed, we colour two vertices of C and the
remaining vertex forms A′k′1

= {w}, a new part of size 1, which is appended to the

ordering of A′. Note that |V (G′)| = |V (G)| − 2.
Now, we need to check that all the inequalities of Lemma 5 hold for G′ and f ′.

Inequality (1) holds for A′i with 1 6 i < k′1 as the right hand side decreases by 1
and the left hand side decreases at most by 1. Inequality (1) holds for A′k′1

= {w}
either because (3.2) is saturated for u, v in G and hence

f ′(w) = f(w) > |V (G)| − 1 + k3 + k2 + k1 − (|V (G)| − 1) = k′3 + k′2 + k′1,

or because (3.1) is saturated for v in G and hence

f ′(w) = f(w)> |V (G)|−1−k3−k2 > 2k3+k2+k1−1 = 2(k′3+1)+k′2+(k′1−1)−1.

The inequality (3.3) for C ∈ C holds as the right hand side decreased by 2 and the
left hand side decreased by at most 2 (see (ii)). The other inequalities hold trivially.

Note that in all remaining cases

(i) For each C ∈ C either |U ∩ C| 6 1, or |U ∩ C| = 2 and (3.2) is not saturated
for U ∩C in G (we are not in Case 3). This implies that inequalities (3.2) will
hold for any G′ provided |V (G′)| 6 |V (G)| − 1.

Case 4. There is B ∈ B with U ∩B = {v} and (2.1) is saturated for v.

Let B = {u, v}. Put I = {v}. Then k′2 = k2 − 1 and s′ = s + 1 and all other
parameters remain unchanged. The part {u} form a new part of size 1 and is
appended at the end of the order to the class S as S′s′ . Note that |V (G′)| =
|V (G)| − 1.

We are going to check the inequalities for G′ and f ′. Inequalities (1) for A′j with

1 6 j 6 k′1 and (1’) for S
′

j with 1 6 j 6 s′− 1 hold as the right hand side decreases
by 1 while the left hand side decreases at most by 1. Inequality (1’) for S′s′ = {u}
holds by (2.2) for u, v in G and the saturation of (2.1) for v in G

f ′(u) = f(u) > |V (G)| − k3 − k2 = 2k′3 + (k′2 + 1) + k1 + (vS′(s′)− 1).

The inequalities (2.1), (3.1) and (3.3) for G′ with f ′ hold trivially.

Note that in all remaining cases
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(i) For all v ∈ U ∩
⋃
B∈B B the inequality (2.1) is not saturated for v in G. This

means that (2.1) will hold in any G′.

Case 5. There is C ∈ C with U ∩ C = {v} and (3.1) is saturated for v.

Let C = {u, v, w} and put I = {v}. The remaining part {u,w} is appended at
the end of the sequence S. Note that |V (G′)| = |V (G)| − 1.

The inequalities (1) for A′j with 16 j 6 k′1 and (1’) for S′j with 16 j 6 s−1 hold
as the right hand side decreases by 1 while the left hand side decreases at most by
1. Inequalities (1’) for the vertices of the new part S′s′ = {u,w} hold because (3.1)
is saturated for v in G and hence for x ∈ {u,w},
f ′(x) = f(x) > (|V (G)| − 1)− k3 − k2 = 2(k′3 + 1) + k′2 + k′1 + (vS′(s′)− 1)− 1,

The inequalities (2.1), (3.1) for G′ are trivial. The inequalities (3.3) for G′ hold as
the right hand side decreases by 2 and the left hand side at most by 2 (see (ii)).

Note that in all remaining cases

(i) For all v ∈ U ∩
⋃
C∈C C the inequality (3.1) is not saturated for v in G. This

means that (3.1) will hold in any G′.

Case 6. There is 1 6 i 6 k1 with Ai ⊆ U .

Let i be the least index with Ai = {v} ⊆ U . Put I = {v}. Then k′1 = k1 − 1
and all other parameters remain unchanged. We also renumber the parts of size 1,
namely A′j = Aj+1 for i 6 j 6 k′1. Note that |V (G′)| = |V (G)| − 1.

The inequality (1) for A′j with 1 6 j < i holds as both sides are the same in G′

as in G. The inequality (1) for A′j = Aj+1 = {u} with i 6 j 6 k′1 holds as

f ′(u) > f(u)− 1 > k3 + k2 + (j + 1)− 1.

The inequalities (3.3) hold in G′ as the right hand side decreased by 2 and the left
hand side decreased by at most 2 (see (ii)).

Case 7. There is C ∈ C with U ∩ C = {u, v}.
Let C = {u, v, w}. Put I = {u, v}. Then k′3 = k3 − 1 and k′1 = k1 + 1 and

all other parameters remain unchanged. There is one new part of size 1, namely
A′1 = {w}, and all the others are renumbered A′j = Aj−1 for 2 6 j 6 k′1. Note that
|V (G′)| = |V (G)| − 1.

The inequality (1) for A′1 = {w} holds by (3.1) for w in G

f ′(w) = f(w) > k3 + k2 = (k′3 + 1) + k′2.

The inequality (1) for A′j = Aj−1 = {x} with 2 6 j 6 k′1 holds as x 6∈ U (Case 6
does not apply)

f ′(x) = f(x) > k3 + k2 + (j − 1) = k′3 + k′2 + j.

The inequalities (3.3) hold in G′ as the right hand side decreased by 2 and the left
hand side decreased by at most 2.

Note that in all remaining cases

(i) |U ∩ C| 6 1, for C ∈ C. As we always have |V (G′)| 6 |V (G)|−1 and k′3 +k′2 +
k′1 6 k3 + k2 + k1 the inequalities (3.3) will hold for any G′.

Case 8. There is 1 6 i 6 s with Si ∩ U 6= ∅.
Let i be the least i with Si ∩ U 6= ∅. Put I = Si ∩ U . Then s′ = s − 1 and all

other parameters remain unchanged. If |Si ∩ U | = Si, we update the order of the
parts in the sequence S, in the following way, for i 6 j 6 s′ we put S′j = Sj+1. If
|Si ∩ U | 6= Si the order remains the same. Note that |V (G′)| 6 |V (G)| − 1.

The inequalities (1) for A′j with 1 6 j 6 k′1 and (1’) for S
′

j with 1 6 j < i hold as
both sides does not change. For every vertex from parts Sj+1, . . . Ss the right hand
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side of the inequality (1’) decreases by at least one, therefore inequalities hold. For
the vertices from Si \ U (this set may be empty) both sides of inequality does not
change, therefore inequality holds as before.

Note that in all remaining cases

(i) Inequalities (1) and (1’) will hold in any G′, provided that the right hand side
does not increase.

Case 9. There is C ∈ C with C ∩ U 6= ∅.
As Case 7 does not apply, |C∩U |= 1. We put I =C∩U . Say that C \U = {u, v}

then we put {u, v} into class B′. It is straightforward that vertices from {v, u} satisfy
(2.1). They also satisfy (2.2) as

f ′(u) + f ′(v) = f(u) + f(v) > |V (G)| − 1 = |V (G′)|.

Case 10. There is B ∈ B with B ∩ U 6= ∅.
We put I = B ∩ U . Say that B \ U = {u}. We put {u} to the very beginning

of the class A′. By the observations above, all the inequalities hold, and hence G′

is on-line f ′-choosable (note that for Inequalities (1) and (1’), the right hand side
does not increase, as k′2 decreases by 1 and the index increases by 1).

It is easy to see that one of the 10 cases above occurs and hence G is on-line
f -choosable. �

4. Graphs with independence number 3

Theorem 6. If G is a graph with independence number at most 3 and |V (G)| 6
2χ(G), then χ(G) = chOL(G).

Proof of Theorem 6. Without loss of generality, we can assume that G is a complete
multipartite graph with parts of size at most 3. We are going to verify that G
satisfies Lemma 5 with S = ∅, f ≡ χ(G) and arbitrary order on the class A (when
S = ∅ the remaining classes of the partition are determined). Let k1, k2, k3 denote
the sizes of parts of sizes 1,2,3, respectively.

Inequalities for the single vertices (1), (2.1), (3.1) hold as f(v) = χ(G) = k1 +
k2 +k3. Condition on pairs of vertices (2.2), (3.2) hold since f(u)+f(v) = 2χ(G)>
|V (G)| (by the assumption on G). Moreover adding χ(G) = k3 + k2 + k1 on both
sides of the inequality (3.2) gives (3.3).

Now, by Lemma 5 G is on-line chromatic-choosable. �

It was shown in [19] that Conjecture 1 is true for graphs with independence
number at most 3. The proof is a little complicated. Next we give an alternative
proof of this result. We shall need the following lemma proved in [10] and [16].

Lemma 7. A graph G is k-choosable if it is L-colourable for every k-list assignment
L such that |

⋃
v∈V L(v)| < |V |.

Theorem 8. If G is a graph with independence number at most 3 and |V (G)| 6
2χ(G) + 1, then χ(G) = ch(G).

Proof. For a contradiction let G be a counterexample with minimum number of
vertices. Let L be a χ(G)-list assignment such that G is not L-colourable. By
Theorem 6, we may assume that |V (G)| = 2χ(G) + 1 and by Lemma 7 we assume
that the number of colours occurring on all the list is at most 2χ(G).

We can also assume that for every part {u, v} of size 2 the lists L(u) and L(v)
are disjoint. If not, then we pick a colour c ∈ L(u)∩L(v) and use it to colour both
vertices. The remaining graph G′ = G− {u, v} still satisfies |V (G′)| 6 2χ(G′) + 1.
Now, if G′ is chromatic-choosable then G′ is colourable from L−{c}. But this would
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imply that G is colourable from L. Thus G′ is not chromatic-choosable which is a
contradiction with the minimality of G. For the very same reason there is no colour
that belongs to all three lists of vertices of any part of size 3 in G.

As |V (G)| = 2χ(G) + 1 there exists at least one part of size 3 in G, say {u, v, w}.
Each vertex has a list of size χ(G) and the total number of colours is at most 2χ(G),
therefore there exists a colour c which belongs to lists of two vertices from this part,
say c ∈ L(u) ∩ L(w).

We are going to construct an L-colouring of G in two steps. First, we use c to
colour u and w, remove them from G and remove colour c from all lists. Than we
prove that the remaining graph G′ = G− {u,w} is on-line f ′-choosable, where

f ′(v) =

{
χ(G) if c /∈ L(v),

χ(G)− 1 if c ∈ L(v).

In particular, G′ can be coloured from L − {c}, which finishes the colouring of G
and gives the final contradiction.

The only thing we need to verify is that G′ and f ′ satisfy the assumptions of
Lemma 5 with S = ∅ and parts from A ordered in such a way that the part {v}
has the greatest index. Let k1, k2, k3, k

′
1, k
′
2, k
′
3 denote the numbers of parts of size

1, 2 and 3 in G and G′, respectively. We have

k′1 = k1 + 1, k′2 = k2, k′3 = k3 − 1.

Inequalities (2.1), (3.1) hold as for any x in part of size 2 or 3 in G′

f ′(x) > χ(G)− 1 > k3 + k2 − 1 = k′3 + k′2

The part of size 1, say {x}, with index less than k′1 satisfies (1) as

f ′(x) > χ(G)− 1 = k′3 + k′2 + k′1 − 1.

The remaining part of size 1, namely {v}, satisfies (1) as f(v) = χ(G) = χ(G′) (as
c 6∈ L(v)). Inequalities (2.2) hold since colour c belongs to the list of at most one
vertex in every part of size 2 in G′. Therefore, for any {x, y} part of size 2 in G′

we have
f ′(x) + f ′(y) > 2χ(G)− 1 = |V (G′)| − 1.

It remains to verify inequalities (3.2) and (3.3). Let x, y, z be any three vertices
forming a part of size 3 in G′. Then

f ′(x) + f ′(y) > 2χ(G)− 2 = |V (G′)| − 1,

f ′(x) + f ′(y) + f ′(z) > 3χ(G)− 2 = |V (G′)| − 1 + k′3 + k′2 + k′1.

The latter inequality follows from the fact c is not in all three L(x), L(y), L(z). �

5. The complete multipartite graph K3?k

There are not many graphs for which the exact value of their choice numbers
are known. The graphs K3?k are among those few graphs G for which ch(G) are
determined. In [10], Kierstead proved that ch(K3?k) = d(4k−1)/3e. In this section,
we present an alternative proof of this result.

Theorem 9 (Kierstead 2000). For any positive integer k, ch(K3?k) = d 4k−13 e.

The lower bound ch(K3?k) > d 4k−13 e was given by Erdös, Rubin and Taylor [3].
As the proof is very short, we include it here for the convenience of the reader.
Let q = d 4k−13 e − 1. Let A,B,C be disjoint colour sets with |A| = bq/2c and |B| =
|C| = dq/2e. Assume the parts of K3?k are Vi = {xi, yi, zi} for i = 1, 2, . . . , k. Let
L(xi) = A ∪B,L(yi) = B ∪C and L(zi) = A ∪C. Then |L(v)| > q for each vertex
v, and if f is an L-colouring of K3?k, then f uses at least 2 colours on Vi, and
hence the total number of used colours is at least 2k. However, straightforward
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calculation shows that |A ∪ B ∪ C| 6 2k − 1. Therefore K3?k is not L-colourable
and hence ch(K3?k) > q + 1 = d 4k−13 e.

The inequality ch(K3?k) 6 d 4k−13 e is a straightforward consequence of the fol-
lowing lemma.

Lemma 10. Let G be a complete multipartite graph with parts of size 1 and 3.
Let A, S, C be a partition of the set of parts of G into classes such that A and
S contains only parts of size 1, while C contains all parts of size 3. Let k1, s, k3
denote the cardinalities of classes A, S, C, respectively. Suppose that class A and
S are ordered, i.e. A = (A1, . . . , Ak1) and S = (S1, . . . , Ss). If f : V (G)→ N is a
function for which the following conditions hold

f(v) > k3 + i, for all 1 6 i 6 k1 and v ∈ Ai (1)

f(v) > 2k3 + k1 + i, for all 1 6 i 6 s and v ∈ Si (1’)

f(v) > k3, for all v ∈ C ∈ C (3.1)

f(u) + f(v) > 2k3 + k1, for all u, v ∈ C ∈ C (3.2)∑
v∈C

f(v) > 4k3 + 2k1 + s− 1, for all C ∈ C, (3.3)

then G is f -choosable.

Proof. Assume the lemma is not true. Let G be a multipartite graph with parts
divided into A, S, C, and let f be a function fulfilling the inequalities (1)-(3.3)
while G is not f -choosable. Moreover, suppose G is a counterexample with the
minimum possible number of vertices. By Lemma 7 there exists a list assignment
{L(v)}v∈V (G) with each |L(v)| = f(v) and |

⋃
v∈V (G) L(v)| 6 |V (G)| − 1 = 3k3 +

k1 + s− 1 such that G is not L-colourable.
The claims below prove a series of properties of G and list assignment L. In

the arguments we often make use the minimality of G and consider some smaller
graphs with modified list assignment. The modified graph will be denoted by G′

and, unless otherwise stated, the classes of its vertices A′, S ′ and C′, together with
orders on A′ and S ′, are inherited from G. The parameters k′1, s

′, k′3 correspond
to the analogous parameters of G′. The modified list assignment is going to be
denoted by L′(v) and f ′(v) = |L′(v)| for all v ∈ V (G′).

Claim 0. For any C ∈ C we have
⋂
v∈C L(v) = ∅.

Proof. Suppose there is C ∈ C with c ∈
⋂
v∈C L(v). We colour all vertices of C with

c and consider the smaller graph G′ =G−C with list assignment L′(v) =L(v)−{c}.
It is easy to verify that G′ (with A′, S ′, C′ inherited from G) and f ′ satisfies the
assumptions of the lemma. By the minimality of G, G′ is L′-colourable. This
implies that G is L-colourable, in contrary to our assumption. �

Claim 1. For any u, v ∈ C ∈ C if f(u) + f(v) = 2k3 + k1, then L(u) ∩ L(v) = ∅.

Proof. Suppose that for some part C = {u, v, w} we have f(u) + f(v) = 2k3 + k1
and there exist c ∈ L(u) ∩ L(v). Then we colour u and v with c, and consider the
smaller graph G′ = G− {u, v} with lists L′(x) = L(v)− {c} for all x ∈ V (G′). The
partition A′, C′ is inherited from G and S ′ = ({w}, S1, . . . , Ss) has one more part,
namely {w}, while all other parts have shifted index, i.e., S′i+1 = Si for 1 6 i 6 s.
In particular, k′1 = k1, s′ = s+ 1, k′3 = k3 − 1. Note that the inequality (1’) holds
for S′1 = {w} as

f ′(w) = f(w) > (4k3 + 2k1 + s− 1)− (2k3 + k1) = 2k3 + k1 + s− 1 = 2k′3 + k′1 + 1,

and (1’) holds for S′i+1 = Si = {x} for 1 6 i 6 s as

f ′(x) > f(x)− 1 > (2k3 + k1 + i)− 1 = 2k′3 + k′1 + i+ 1.
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Again, it is easy to verify that G′ with f ′ satisfies the assumptions of the lemma.
Hence G′ is L′-colourable, implying that G is L-colourable, a contradiction. �

Claim 2. For any v ∈ C ∈ C we have f(v) > k3, i.e., the inequality (3.1) is not
tight.

Proof. In order to get a contradiction suppose that {v, u, w}=C ∈ C and f(v) = k3.
We separate the argument into two cases:

∗ L(v)∩(L(u)∪L(w)) 6= ∅. Without loss of generality, assume that L(v)∩L(u) 6= ∅.
Let c ∈ L(v)∩L(u). We colour u and v with c, and consider the smaller graph
G′ =G−{u, v} with lists L′(x) =L(x)−{c} for all x ∈ V (G′). The partition S ′,
C′ is inherited from G and A′ = (A1, . . . , Ak1 , {w}) has one more part, namely
{w}, appended to the inherited ordering. In particular, k′1 = k1 + 1, s′ = s,
k′3 = k3 − 1. Note that the inequality (1) holds for A′k′1

= {w} as

f ′(w) = f(w) > (2k3 + k1)− k3 = k′3 + k′1.

Let x, y ∈C ∈C′. Inequality (3.2) for x and y hold as either f(x)+f(y)> 2k3+k1
and therefore

f ′(x) + f ′(y) > f(x) + f(y)− 2 > 2k3 + k1 − 2 = 2k′3 + k′1 − 1,

or f(x) + f(y) = 2k3 + k1 and therefore by Claim 1 L(x) and L(y) are disjoint.

f ′(x) + f ′(y) > f(x) + f(y)− 1 = 2k3 + k1 − 1 = 2k′3 + k′1.

With these observations, it is easy to verify that G′ with f ′ satisfies the as-
sumptions of the lemma. Hence G′ is L′-colourable and therefore G would be
L-colourable, a contradiction.

∗ L(v)∩ (L(u)∪L(w)) = ∅. Then by (3.3) and our assumption f(v) = k3 we get
that

f(u) + f(w) > (4k3 + 2k1 + s− 1)− k3 = 3k3 + 2k1 + s− 1.

On the other hand the total number of colours is at most 3k3 + k1 + s− 1 and
as L(v) is disjoint with L(u) ∪ L(w) we get |L(u) ∪ L(w)| 6 2k3 + k1 + s − 1.
Combining the two inequalities above we obtain

|L(u) ∩ L(w)| > k3 + k1.

We colour vertex v by any colour c ∈ L(v). Then we consider graph G′ =
G − {v, u, w} + {x}, where x is a brand new vertex which is convenient to be
seen as a merger of u and w. Let L′(y) = L(y) − {c} for all y ∈ V (G′) − {x}
and L′(x) = L(u) ∩ L(w). The partition S ′, C′ is inherited from G and A′ =
(A1, . . . , Ak1 , {x}) has one more part, namely {x}, appended to the inherited
ordering. In particular, k′1 = k1+1, s′ = s, k′3 = k3−1. Note that the inequality
(1) holds for A′k′1

= {x} as

f ′(x) = |L(u) ∩ L(w)| > k3 + k1 = k′3 + k′1.

The other inequalities for G′ and f ′ hold for the same reasons as before. So
G′ is L′-colourable. We obtain an L-colouing of G, by colouring the vertices u
and w with the colour of x and colouring v with c, a contradiction.

�

Claim 3. k1 = 0.

Proof. Suppose that k1 6= 0. Then let A1 = {v}. We colour v with any colour
c ∈ L(v) and consider the smaller graph G′ = G−{v} with lists L′(x) = L(x)−{c}
for all x ∈ V (G′). The partition A′ = (A2, . . . , Ak1), S ′, C′ is inherited from G.
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Note that A′ has one part less and k′1 = k1− 1, s′ = s, k′3 = k3. Now, we verify the
inequalities (1)-(3.3) for G′ and f ′:

∗ (1) holds as the indices of parts are decreased, i.e. A′i = Ai+1 for 1 6 i < k′1;
∗ (1’) holds as k1 decreases,
∗ (3.1) holds as, by Claim 2, it is not tight in G,
∗ (3.2) holds for x, y ∈ C ∈ C′ as k1 decreases and either (3.2) is not tight for u,
v in G, or f ′(x) + f ′(y) > f(x) + f(y)− 1 (by Claim 1);

∗ (3.3) holds as k1 decreases by 1 and the left hand side decreases by at most 2
(by Claim 0).

Once again by minimality of G we get that G′ is f ′-choosable, and that gives that
G is L-colourable, a contradiction. �

We are now ready to derive the final contradiction. If k3 = 0 then G has only
parts of size 1 in S and it is immediate that G is f -choosable. Assume k3 6= 0. Recall
that the total number of colors in all lists is at most 3k3 + s− 1. Let {u, v, w} be a
part of size 3. Then f(u) + f(v) + f(w) > 4k3 + s− 1 > 3k3 + s− 1 and therefore
there must be a colour c which appears in two out of three colour sets L(u), L(v),
L(w), say c ∈ L(u) ∩ L(v).

We colour u and v with c and consider G′ = G−{u, v} with lists L′(x) = L(x)−
{c}. Again, the partition S ′, C′ is inherited from G and we simply put A′ = ({w}).
Thus, k′1 = 1, s′ = s, k′3 = k3 − 1. We verify the inequalities (1)-(3.3) for G′ with
f ′. The inequality (1) for A′1 = {w} holds as

f ′(w) = f(w) > k3 = k′3 + 1.

All the other inequalities hold for analogous reasons as before. Once again, by min-
imality of G, we get that G′ is f ′-choosable, and that gives that G is L-colourable,
a contradiction. �

The last result of the paper is another immediate consequence of Lemma 5.

Corollary 11. chOL(K3?k) 6 3
2k, for any positive integer k.
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