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Abstract. We analyze the on-line dimension of semi-orders as a two-person
game between Algorithm and Spoiler, in a customary way. The game is played
in rounds. Spoiler presents a collection of intervals representing a semi-order,
one interval at a time. Algorithm maintains its realizer, i.e., the set of linear
extensions intersecting to the semi-order presented so far. Each time a new
interval is presented, Algorithm inserts it into all maintained linear extensions
and is not allowed to change the ordering of the previously introduced elements.
Reading carefully the theorem of Rabinovitch on dimension of semi-orders one
can prove that Algorithm needs only 3 linear extensions when Spoiler presents
intervals of unit length. With the introduction of proper intervals, however,
Algorithm can be forced to use one more extension. We prove that the value
of the game on proper intervals is exactly 4.

1. Introduction

The concept of dimension of partial orders was introduced more than 60 years ago
in Dushnik and Miller’s classic paper [1]. Dimension theory has greatly influenced
the research on combinatorial properties of posets and graphs. For a comprehensive
account on the topic and an extensive bibliography work we refer the reader to
Trotter’s monograph [2].

When P = (X,P ) and Q = (X,Q) are partial orders on the same set X then we
call Q an extension of P if P ⊆ Q, i.e., if x 6 y in P implies x 6 y in Q, for all
x, y ∈ X . Among all extensions of a given poset, those which are additionally linear
orders are of special importance. They are called linear extensions. For a poset
P consisting of n elements x1, . . . , xn we write L = (x1, . . . , xn) as an abbreviation
for a linear extension L = (X,L) of P in which x1 < · · · < xn. A set R of linear
extensions of a poset P intersecting to P is called a realizer of P. This means that
for any two incomparable points x, y in P there are two linear extensions L1, L2 ∈ R
admitting x < y in L1 and x > y in L2. The dimension of a poset P, denoted by
dim(P), is the least integer k for which there exists a realizer of P consisting of k
linear extensions.

It is well known that the dimension of P = (X,6) with |X | = n does not exceed
n
2
. Recall that for a partially ordered set P the width of P is the size of the largest

antichain in P and the height of P is the size of the largest chain in P. By Dilworth’s
theorem any order of width w can be partitioned into w chains. Another classical
Dilworth’s theorem says that dim(P) 6 width(P).

A poset P = (X,6) is called an interval order if there is a function I which
assigns to each x ∈ X a closed interval I(x) = [lx, rx] of the real line so that x < y
in P if and only if I(x) < I(y), i.e., rx < ly. The function I is called an interval

representation of P.

Date: November 22, 2011.
Key words and phrases. on-line, dimension, semi-order.

1



ON-LINE VERSION OF RABINOVITCH THEOREM FOR PROPER INTERVALS 2

It is not entirely naive to ask whether there are interval orders which have
large dimension. It turns out that although interval orders have somewhat one-
dimensional nature, their dimension can be arbitrarily high. Surprisingly, according
to our knowledge, the complexity of determining the dimension of interval orders is
still unknown, in contrast to all orders, where the problem is known to be NP-hard.

An interval order P = (X,6) is called a semi-order if it has an interval represen-
tation {[lx, rx] : x ∈ X} such that rx = lx + 1 for every x ∈ X . By possibly locally
stretching some of the intervals one can easily show that P is a semi-order if it
admits a proper interval representation, i.e., a representation in which no interval
is properly contained in another one.

A poset which admits a partition of its elements into antichains A1, . . . , An such
that A1 < A2 < . . . < An (i.e. ai < aj for ai ∈ Ai, aj ∈ Aj and i < j) is called a
weak order. It is easy to see that every weak order is also a semi-order.

Theorem 1 (Rabinovitch [3]). The dimension of a semi-order is at most 3.

The bound obtained in Theorem 1 is tight, i.e., semi-orders of dimension 3 do
exist. In fact, the original result of Rabinovitch lists four 3-dimensional semi-orders
and proves that every semi-order of dimension 3 must contain at least one of these
four orders as a subposet.

All mentioned basic parameters of orders: width, height and dimension have their
witnessing structures. These structures in are: chain decomposition, antichain de-
composition and a realizer, all of the smallest possible size equal to the respective
parameter. In the on-line setting the sole question about the value of those param-
eters is not that interesting, as all of them can be computed after each round of the
game exactly in the same way as in the off-line case. Therefore, instead of asking
only for the scalar values we additionally require to build (and update on-line) an
appropriate witnessing structure, in our case an on-line realizer.

The on-line dimension of orders is defined as an outcome of a two-person game.
We call the players Spoiler and Algorithm. The game is played in rounds. Spoiler
presents an on-line order, one point at a time. Algorithm maintains its realizer, i.e.,
the set of linear extensions intersecting to the order presented so far. It is forbidden
for Algorithm to change the ordering of the previously introduced elements in the
existing linear extensions. The performance of Algorithm is measured by comparing
the number of linear extensions used against the off-line width of the presented
poset. The value of the game, denoted by val(w) is the least integer k such that
Algorithm has a strategy using at most k chains on any on-line order of width w
presented by Spoiler.

For the unrestricted class of all orders Kierstead, McNulty and Trotter [4] proved
that val(3) = ∞, i.e. Algorithm can be forced to construct an arbitrarily large
realizer already on orders of width 3. In the very same paper they also prove that
if Spoiler presents an on-line order of width w without an n-crown as a subposet
for any n > 3 then the number of linear extensions needed by Algorithm is indeed
bounded in terms of w. This brings up the question whether on-line dimension is
perhaps finite on other classes of orders defined in terms of forbidden structures,
like interval orders or semi-orders?

The on-line dimension of interval orders is still far from being understood. For
example, instead of presenting merely points, Spoiler may reveal the underlying
interval representation of the poset. The result of the two games will be completely
different. As interval orders do not induce n-crown for n > 3 their on-line dimension
is bounded in terms of the width. The results of Hopkins [5], Kierstead, McNulty,
Trotter [4] and Felsner [6] give us some better bounds (see Table 1).



ON-LINE VERSION OF RABINOVITCH THEOREM FOR PROPER INTERVALS 3

presentation method bounds remarks

w/o representation 4

3
w 6 ? 6 4w − 4 [4], [5]

with representation ? 6 log(w) [6]

Table 1. On-line dimension of interval orders

In this paper we investigate the on-line dimension of semi-orders. First, inspired
by the proof technique of Rabinovitch theorem, we show that Algorithm can main-
tain an on-line realizer of size 3 if intervals presented by Spoiler are of the same
length. Since semi-orders of dimension 3 do exist, the achieved result is optimal.
Next, in Section 3, we deal with the proper interval representation, i.e., the case in
which the presented intervals may be arbitrarily long but none of them can contain
another one. For this variant we prove a matching lower and upper bound of 4.

presentation method bounds remarks

w/o representation 4

3
w 6 ? 6 2w [4], [7]

proper representation 4 Theorem 3

unit representation 3 Corollary 2

Table 2. On-line dimension of semi orders

2. Proof of Rabinovitch theorem

When P = (X,6) is an interval order with a representation I, the relation be-
tween the elements of P can be easily obtained from the set {I(x) : x ∈ X} and
so we use the bold symbol I when considering the poset P with its interval repre-
sentation I. An interval representation I is distinguishing if all end points of the
intervals are distinct numbers (in particular, no interval is degenerate).

Let I be an interval representation. An injective function µ : I → R is called
a marking function on I if for every interval x ∈ I we have µ(x) ∈ x. Marking
function µ naturally defines a linear extension Lµ of I in which x < y if and only if
µ(x) < µ(y).

We now give the proof of Rabinovitch theorem. The reason for including a proof
of such a classic result shall become apparent later in Sec. 3.2, when proving the
upper bound of Theorem 3.

Proof of Theorem 1. Let P be a semi-order and I a distinguishing, unit-length rep-
resentation of P. Any interval x ∈ I contains one or two integer points but we
can always shift the whole representation in such a way that each interval contains
exactly one such point. Let f : I→ Z be the function assigning to an interval x its
unique integral grid point. Note that:

(i) f−1(k) is an antichain in I,
(ii) f−1(k) < k + 1 < f−1(k + 2).

Define a partition of I into the disjoint sum I0 ∪ I1 as follows:

I0 := f−1(2Z), I1 := f−1(2Z+ 1).
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From (i) and (ii) we get that both I0 and I1 are serial compositions of antichains,
i.e., weak orders. Now define the marking functions µj , for j = 0, 1:

µj(x) =

{

rx, if x ∈ Ij ,

lx, otherwise,

for x = [lx, rx] ∈ I. Let L0 = Lµ0
and L1 = Lµ1

. Define the third linear extension
L2 so that

– if f(x) < f(y) then x < y in L2,
– if f(x) = f(y) then x < y in L2 if and only if x > y in L0.

Linear extension L2 orders intervals according to their f -value, i.e., their grid point,
and in case of equal f -values the ordering is a reverse of L0. A linear order L2 is
indeed an extension of I as x < y implies f(x) < f(y).

We claim that {L0, L1, L2} is a realizer of I. Choose an incomparable pair
x‖ y. There are now two possibilities: |f(x)− f(y)| = 1 or f(x) = f(y). In the
former case without loss of generality we may assume that x ∈ I0, y ∈ I1 and
lx < ly < rx < ry. Thus µ0(x) > µ0(y), µ1(x) < µ1(y) and therefore x > y in L0

and x < y in L1 (see Figure 1). In the latter case, f(x) = f(y) implies x, y ∈ Ij . By
definition of L2, points x and y are sorted in the opposite order in linear extensions
L0 and L2.

2k 2k + 1

x

y

y

x
x

y

µ1(x)

µ1(y)

µ0(x)

µ0(y)
L0 L1

Figure 1. Marking functions for x‖y with x ∈ I0, y ∈ I1

�

It is almost clear that the realizer {L0, L1, L2} from the proof above can be
constructed in the on-line setting. Indeed, the partition I = I0 ∪ I1 can be done on-
line as incorporation of an incoming interval x into I0 or I1 depends only on f(x).
Then L0, L1 and consequently L2 depend only on I0 and I1. The assumptions that
incoming representation is distinguishing and that each interval x contains exactly
one integral point f(x) can be omitted by differentiating endpoints with some ε’s.

Corollary 2. The value of the on-line dimension game for a unit-length interval

representation is 3.

3. On-line game on proper intervals

We now consider the case when the semi-order presented by Spoiler is given by
a proper interval representation, i.e., a representation in which intervals may be
arbitrarily long but none of them may be properly contained in another one. In
particular, Algorithm can no longer use a unit-length grid to partition the incoming
intervals into two weak orders as in the proof of Rabinovitch theorem. Instead we
have the following result:

Theorem 3. The value of the on-line dimension game for a proper interval repre-

sentation is 4.
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3.1. Lower bound. Assume that 3 linear extensions L1, L2 and L3 suffice to
maintain a realizer of an on-line proper representation of a semi-order. We present
a strategy for Spoiler which forces Algorithm to use the 4-th linear extension. The
strategy is presented in phases. Already in Phase 1 we make use of the integer value
N which will be calculated at the end of the proof so that all needed Ramsey-style
arguments could be carried out. For a curious reader we may reveal that N = 72.

Phase 1. Spoiler fixes an integer n > N and presents n intervals a1, . . . , an forming
an antichain, with end points sorted as in Figure 2. For i = 1, . . . , n/2, consider

..
.

a2

an−1

an

a1

Figure 2. Phase 1

n/2 pairs of intervals (a2i−1, a2i). Since a2i−1 and a2i are incomparable, in at least
one linear extension out of L1, L2 and L3, we have a2i−1 > a2i. Hence there is one
extension, say L1, so that for n′ > n/6 such pairs we have a2i−1 > a2i in L1. For
the clarity of further consideration we renumber ai’s so that for i = 1, . . . , n′ we
have a2i−1 > a2i in L1. All other points can actually be now omitted but they are
kept in mind only to prevent Spoiler from presenting a new interval in a way that
it contains or is contained in one of them. Actually they can be omitted as all but
one intervals presented by Spoiler will be of the same length. The one exceptional
interval will arrive at the very end and then we will analyze it carefully.

Phase 2. Spoiler presents n′ intervals b1, b3, . . . , b2n′−1, again forming an antichain
and such that bi ‖ ai+1, . . . , a2n′ and bi > ai, . . . , a1 (see Figure 3). Recall that

..
...

.

a2

a2n′−1

a2n′

b1a1

b2n′−1

Figure 3. Phase 2

a2i−1 > a2i in L1. This, together with b2i−1 > a2i−1, gives b2i−1 > a2i in L1. Since
b2i−1 ‖a2i, either in L2 or L3 we must have b2i−1 < a2i. Without loss of generality
we may assume that for n′′ > n′/2 of the bi’s we have b2i−1 < a2i in L2. As in
Phase 1, we do a renumbering of the important intervals to get b2i−1 < a2i in L2

for i = 1, . . . , n′′. After that, we have

b1 < a2 < b3 < a4 < · · · < a2n′′−2 < b2n′′−1 < a2n′′ in L2. (1)

Recall that the k-th Ramsey number R(k) is the smallest integer n so that any
graph of order n contains either a k-element clique or a k-element independent set.
In the next argument we will merely use the fact that R(3) = 6.

According to (1) we have b1 < b3 < · · · < b2n′′−1 in L2. If Algorithm wants to
keep a realizer of size 3, then for 1 6 i < j 6 n′′ it must be b2i−1 > b2j−1 either in
L1 or in L3. If only n′′ > 6 then, since R(3) = 6, we find three indices i0, j0 and
k0 so that 1 6 i0 < j0 < k0 6 n′′ and b2i0−1 > b2j0−1 > b2k0−1 in Ls, for s = 1 or
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s = 3. As in Phases 1 and 2, we renumber the existing intervals so that i0 = 1,
j0 = 2, k0 = 3 and hence

b1 > b3 > b5 in Ls. (2)

Phase 3. Spoiler presents two incomparable intervals c1, c3 so that c1 ‖ b3, b5 and
c1 > b1, a1, . . . , a6 while c3 ‖b5 and c3 > b1, b3, a1, . . . , a6 (see Figure 4).

a2

c3

b5

b3

b1a1

a4

a3

a6

a5

c1

Figure 4. Phase 3

We claim that
c1, c3 > b1, b3, b5 both in L2 and Ls. (3)

First, recall from (1) that a6 > b1, b3, b5 in L2. Since c1, c3 > a6, it is clear that
c1, c3 > a6 > b1, b3, b5 in L2. Similarly, c1, c3 > b1, b3, b5 in Ls as c1, c3 > b1 and
according to (2) we have b1 > b3 > b5 in Ls.

Now, since c1 ‖ b3 and c3 ‖ b5, from (3) we get b3 > c1 in L4−s and b5 > c3 in
L4−s. This, together with c3 > b3, gives

b5 > c3 > b3 > c1 in L4−s. (4)

Consider what would happen if Spoiler introduced an interval x such that

a1, . . . , a6, b1, b3 < x and x ‖ c1, c3, b5, (5)

see Figure 5. From (1) and (2) we get b5 < a6 < x in L2 and b5 < b1 < x in Ls,
respectively. If Algorithm wants to keep a realizer of size 3, it must put x below b5
in L4−s.

a2

c3

b5

b3

b1a1

a4

a3

a6

a5

x

y

c1

Figure 5. Phase 3—points x and y

Now, consider what would happen if Spoiler introduced y such that

a1, . . . , a6, b1, b3, b5, c1 < y and y ‖ c3, (6)

see Figure 5. Observe, that (4) together with c1 ‖c3 implies c1 > c3 in Ls or in L2.
Furthermore, y > b5 > c3 in L4−s. Hence if Algorithm wants to keep a realizer of
size 3, there is exactly one linear extension where y can be put below c3, namely
Ls or L2. We have just proved the following observation.

Observation 4. Assume that Spoiler plays the strategy described in Phases 1–3

and Algorithm builds a realizer using 3 linear extensions L1, L2 and L3. Then

there exist 2 distinct indices i0, j0 ∈ {1, 2, 3} such that
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(i) if Spoiler presents interval x satisfying (5) then x < b5 in Li0 ,

(ii) if Spoiler presents interval y satisfying (6) then y < c3 in Lj0 .

Phase 4. Spoiler plays the mirror-flipped strategies from Phases 1–3 completely
to the right, and far apart from the existing intervals, so that the resulting family
of intervals looks as in Figure 6. Note that in all 3 linear extensions L1, L2 and L3

we have b5, c1, c3 < b′5, c
′

1, c
′

3. Now, Observation 4 translated for Phase 4 looks as
follows.

..
. ...c′3

c′1 b′1

b′3

b′5

a6

b5

c3b3

b1

a′6

c1

Figure 6. Phase 4

Observation 5. Assume that Spoiler plays the strategy described in Phases 1–4

and Algorithm builds a realizer using 3 linear extensions L1, L2 and L3. Then

there exist 2 distinct indices i′0, j
′

0 ∈ {1, 2, 3} such that

(i) if Spoiler presents x′ satisfying (5′) that is dual to (5) then x′ > b′5 in Li′
0
,

(ii) if Spoiler presents y′ satisfying (6′) that is dual to (6) then y′ > c′3 in Lj′
0
.

..
. ...c′3

c′1 b′1

b′3

b′5

x′

y′
a6

b5

c3b3

b1

a′6

c1

Figure 7. Intervals x′ and y′ from Observation 5

Phase 5. A careful reader will easily notice that strategies described in Phases
1–4 could be carried out so that all presented intervals are of unit length. It is only
in Phase 5 where Spoiler takes advantage of relaxing the unit-length to a proper
interval representation of the poset. The indices i0, j0, i

′

0, j
′

0 forced by Observations
4 and 5 obviously satisfy {i0, j0}∩ {i

′

0, j
′

0} 6= ∅. The final attack of Spoiler depends
on the intersection of those two sets.

(i) If i0 = i′0 then Spoiler introduces x1 which plays the role of x to the left part
and x′ to the right part as in Figure 8. Now Observations 4(i) and 5(i) give
x1 < b5 and x1 > b′5 in Li0 = Li′

0
. This is impossible as b5 < b′5.

(ii) If i0 = j′0 then Spoiler introduces x2 which plays the role of x to the left part
and y′ to the right part as in Figure 8. Now Observations 4(i) and 5(ii) give
x2 < b5 and x2 > c′3 in Li0 = Lj′

0
. This is impossible as b5 < c′3.

(iii) If j0 = i′0 then Spoiler introduces x3 which plays the role of y to the left part
and x′ to the right part as in Figure 8. Now Observations 4(ii) and 5(i) give
x3 < c3 and x3 > b′5 in Lj0 = Li′

0
. This is impossible as c3 < b′5.

(iv) If j0 = j′0 then Spoiler introduces x4 which plays the role of y to the left part
and y′ to the right part as in Figure 8. Now Observations 4(ii) and 5(ii) give
x4 < c3 and x4 > c′3 in Lj0 = Lj′

0
. This is impossible as c3 < c′3.

To finish the proof we estimate the value of N . The strategy of Spoiler is
successful if only n′′ > R(3). Thus, it suffices to put n > N = R(3) · 2 · 6 = 72.
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..
. ...c′3

c′1 b′1

b′3

b′5

x1

x2

x3

x4

a6

b5

c3b3

b1

a′6

c1

Figure 8. Phase 5—four possible final attacks of Spoiler

3.2. Upper bound. Taking a second look into the proof of Theorem 1 we may
notice that it consisted of two independent parts. First, using a unit-length grid,
the interval representation was partitioned into 2 weak orders. These weak orders,
in turn, defined 3 linear extensions which yielded a realizer. In our current setting
the presented intervals may be arbitrarily long and so a unit-length grid does not
induce a partition into 2 weak orders as before. However, if we could find another
way of partitioning incoming intervals into (possibly more than two) weak orders,
we could follow the second part of the proof of Theorem 1 to obtain the desired
realizer. To achieve the first goal we introduce a new game in which Algorithm,
instead of a realizer, maintains a partition of incoming intervals into weak orders.
Then, adding a twist to the proof technique from Theorem 1, we show that an
on-line partition into k weak orders can be transformed into an on-line realizer of
size k + 1.

In order to keep the forthcoming arguments as simple as possible, we additionally
assume that the on-line interval representation I presented by Spoiler is distinguish-
ing, i.e., that no two intervals share the same end point. This condition, although
reducing the set of strategies which could have been possibly played by Spoiler, does
not change the value of the game. Indeed, one can easily modify a Spoiler’s strategy
in such a way that: whenever Spoiler presents an interval a exactly the same as
some already presnted interval b then shift a little bit interval a; whenever Spoiler
presents an inteval a sharing exactly one end point with already presented interval
b then blow-up the common endpoint of a and b to a little interval. These mod-
ifications shoild keep the intersection status of a with intervals already presented
unchanged.

Let I be a proper interval representation of a weak order, with its serial de-
composition into antichains I = A1 ∪ . . . ∪ Am such that Ai < Aj , for i < j. Ob-
viously the interval ai =

⋂

x∈Ai
x is non-empty, while ai ∩ aj = ∅ for i 6= j. Let

C(I) = {a1, . . . , am}. We say that ai is the core of each x ∈ Ai. Obviously every
x ∈ Ai contains exactly one core, namely the ai.

Our weak order partitioning game is defined as follows. Spoiler presents an on-
line proper interval representation I. Algorithm partitions I into pairwise disjoint
weak orders I1, . . . , Ik so that cores from the set C := C(I1)∪. . .∪C(Ik) are pairwise
disjoint, i.e., the set C is a linear order. This linear ordering of C is required to
compensate for the lack of a unit-length grid that had produced {f−1(i) : i ∈ Z} in
the proof of Theorem 1.

The least k for which Algorithm has a strategy partitioning any given proper
interval representation into k weak orders is called the value of the weak order
partitioning game. This value gives the following upper bound for the on-line
dimension game.

Proposition 6. Denote by k the value of the weak order partitioning game de-

scribed above. Then the value of the on-line dimension game for the proper interval

representation is bounded from above by k + 1.
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Proof. Assume that the proper representation I is being on-line partitioned into k
weak orders I1, . . . , Ik and that core intervals from the set C = C(I1) ∪ . . .∪C(Ik)
are pairwise disjoint at any moment during the game. Note that although x ∈ I

may contain more than one core from C, every x ∈ Ii contains exactly one core
from C(Ii). We let the function core : I → C assign to x ∈ Ii this unique core
a ∈ C(Ii) for which x ⊇ a.

Define marking functions µi for i = 1, . . . , k as follows:

µi(x) =

{

rx, if x ∈ Ii,

lx, otherwise,

for x = [lx, rx] ∈ I. Let Li = Lµi
for i = 1, . . . , k. This construction assures us that

x > y in Li whenever x ∈ Ii, y /∈ Ii and x‖ y. One more linear extension L0 is
defined so that

(i) if core(x) < core(y) then x < y in L0,
(ii) if core(x) = core(y) then x < y in L0 if and only if x > y in L1.

Note that for intervals x and y with core(x) < core(y) we trivially have x ≯ y as
x ⊇ core(x) and y ⊇ core(y). This proves that L0 is indeed a linear extension of I.
We claim that k + 1 linear extensions L0, . . . , Lk yield a realizer of I. Choose an
incomparable pair x‖y. If x ∈ Ii, y ∈ Ij and i 6= j then x > y in Li and x < y in
Lj. Otherwise, x, y ∈ Ij and since they are incomparable core(x) = core(y). Then
in the linear extensions L0, L1 points x and y are sorted in the opposite order.

Clearly, for a proper distinguishing interval representation I the functions µ1, . . . , µk

(and also the resulting linear extensions L1, . . . , Lk determined by these functions)
can be constructed on-line. To see that the remaining linear extension L0 can be
built on-line as well, note that the ordering of elements in C does not change in
time as the cores can only shrink during the game. �

Proposition 6 supplies us with a tool which transforms the on-line weak order
partition of size k into the on-line realizer of size k+1. The next theorem settles the
exact value of the weak order partitioning game. The upper bound of 3 translates,
by Proposition 6, to an upper bound of 4 for the on-line dimension problem. On
the other hand, it can be verified that the achieved lower bound of 3 holds even in
the more general case when the cores of the weak orders need not be disjoint. This
gives a good illustration of the difference between a unit-length and a proper interval
representations, as by Theorem 1 a unit-length representation can be partitioned
on-line into 2 weak orders.

Theorem 7. The value of the on-line weak order partitioning game for the proper

interval representation is equal to 3.

Proof. For the lower bound observe that an on-line partition into 2 weak orders
would, by Proposition 6, provide an upper bound of 3 for the on-line dimension
game. This, in turn, would contradict the result from Subsection 3.1.

Assume that a proper distinguishing interval representation I is extended to
I′ = I∪{x}. We present an algorithm which assigns the new interval x to one
of the 3 existing (possibly empty) weak orders. We do it in three steps. First,
we introduce a data structure used by the algorithm. Second, we define a set of
invariants which are to be kept during each run of the algorithm. Finally, we present
a pseudo-code of the algorithm.

Data structure. First of all, the data structure of Algorithm 1 consists of the on-line
proper interval representation I presented by Spoiler and its partition into three
weak orders I1, I2 and I3. The set of cores of Ij is denoted by C(Ij). We let
C = C(I1) ∪C(I2) ∪C(I3). The new interval introduced in each round is called x.
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Algorithm maintains two coloring functions cl, cr : C→ {1, 2, 3}. Intuitively, func-
tion cl (cr respectively) colors the left (right) end points of core intervals from C.

Invariants.

(I0) I1 ∪ I2 ∪ I3 yields a partition of I into 3 weak orders.
(I1) The set C of cores is a set of mutually disjoint intervals, i.e., a linear order.
(I2) For every core a ∈ C(Ii) we have {i, cl(a), cr(a)} = {1, 2, 3}.
(I3) For every two consecutive cores a < b from C with a ∈ C(Ii), b ∈ C(Ij) we

have i 6= j and cr(a) 6= cl(b) (see Figure 9).

I2

b

I1

a

2 3

I2

b

I1

a

2 1

I2

b

I1

a

13

Figure 9. All possible colorings of cr(a), cl(b), with a ∈ C(I1)
and b ∈ C(I2).

(I4) For a ∈ C(Ii) and y ∈ Ij with i 6= j we have (see Figure 10)
(i) if la ∈ y then cl(a) = j,
(ii) if ra ∈ y then cr(a) = j.

I3

a

2

y

I2

I3

a

2

y

I2

Figure 10. Invariant (I4) shown for y ∈ I2 and a ∈ C(I3)

Invariant (I1) guarantees a property relating all three weak orders I1, I2 and
I3. It states that the cores of I1, I2 and I3 are mutually disjoint and as such
form a linear order. Note that this is nothing else but the rules of the weak order
partitioning game. From (I3) we know that the neighboring cores in the linear order
originate from distinct weak orders, and moreover, that the colors of the neighboring
end points of the cores must be distinct. Together with (I2) this induces a very
restricted sequence of colors associated with consecutive cores. Finally, for any core
a ∈ C, the value of cl(a) (cr(a), respectively) determines, by (I4), the weak order
of all intervals which do not contain a but do intersect a.

As in the proof of Proposition 6 we let the function core : I→ C assign to x ∈ Ii
the unique core a ∈ C(Ii) for which x ⊇ a. Recall that the weak order Ii is a serial
composition of antichains, say A1, . . . , Am. If two intervals x, y ∈ Ii intersect then
x, y are in the same antichain Aj and therefore core(x) =

⋂

z∈Aj
z = core(y). Hence

for two intervals x, y ∈ Ii we have

x and y intersect if and only if core(x) = core(y). (7)

Note also that for a ∈ C(Ii) there must exist y, z ∈ Ii with ly = la, rz = ra and
core(y) = core(z) = a (see Figure 11).

Before presenting our Algorithm we need the following Claim which will help us
to split its work into cases.

Claim 8. Suppose that the data structure (I, I1, I2, I3, cl, cr) satisfies properties

described by (I0)–(I4). Then

(i) for every y ∈ I there is exactly one a ∈ C such that a ⊆ y,
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Ii

a
z
Ii y

Ii

Figure 11. Intervals witnessing the end points of the core

(ii) if I is extended to I
′ = I∪{x} then the new interval x contains at most one

core interval from C.

Proof. Suppose that (i) fails, i.e., there is y ∈ Ik which contains two core intervals
a < b. By (I1) we may assume that a and b are consecutive in C. From (I3) it now
follows that a and b originate from two different weak orders, i.e., that a ∈ C(Ii),
b ∈ C(Ij) and i 6= j. Without loss of generality we may assume that y /∈ Ij , i.e.,
j 6= k. Since b is contained in y with its both ends, namely lb and rb, our invariant
(I4) gives cl(b) = k = cr(b), which contradicts (I2).

Now, suppose that (ii) fails, i.e., the new interval x contains two core intervals
a < b, in particular, lx < la < rb < rx. Like in the proof of (i), by (I1) we may
assume that a and b are consecutive in C, and again from (I3) we get that a ∈ C(Ii),
b ∈ C(Ij) and i 6= j. Since a is the core of Ii there must be some y ∈ Ii witnessing
the left end point of a, i.e., such that ly = la. Now, from (i) applied to y it follows
that b * y. Hence ry < rb < rx and so y ( x. This contradicts the fact that I∪{x}
is a proper interval representation. �

Algorithm. Algorithm 1 puts the new interval x into one of the three maintained
weak orders I1, I2 or I3 and updates the coloring functions cl, cr in such a way
that invariants (I0)–(I4) are kept. We distinguish the variables before and after the
incorporation of x into I by appending ′ to the latter ones, i.e., I1 becomes I

′

1, cr
becomes c′r etc. In particular, C′ = C(I′1)∪C(I′2)∪C(I′3). By writing ‘put x into Ii’
we mean I

′

i ← Ii ∪{x} and I
′

j ← Ij for j 6= i. To simplify Algorithm we consider the
initial situation in which Spoiler had already introduced the first interval x0. For
this interval we manually define I1 = {x0}, I2 = I3 = ∅ so that C = C(I1) = {x0}
and then we put cl(x0) = 2 and cr(x0) = 3.

As it can be easily seen, the weak order that incorporates the incoming x depends
on how x interacts with the existing cores. Due to Claim 8(ii) this behavior is
covered by six cases 1–3 and 4.1–4.3. All we need to show is that our extended
data structure satisfies (I0)–(I4).

Case 1. In this case we have x ⊇ a for some core interval a ∈ C(Ii). By Claim 8(ii)
we know that a is the unique core interval which is contained in x.

In order to prove (I0) we show that I′i := Ii ∪{x} is a weak order. Clearly, the set
{x} ∪ core−1(a) is an antichain as x intersects every y ∈ Ii for which core(y) = a.
It remains to show that x is disjoint with all other intervals from Ii. Suppose to
the contrary that for some y ∈ Ii with core(y) = b 6= a we have x∩ y 6= ∅. Without
loss of generality assume that a < b and so rx ∈ y (see Figure 12). Let z ∈ Ii be

Ii Iiy

z
x

a b

Figure 12. Case 1, proof of (I0)

an interval witnessing the left end point of the core a, i.e., lz = la. Since I∪{x}
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Algorithm 1: Weak order partition of a proper interval representation

if x ⊇ a for some core a ∈ C(Ii) then /* 1 */1

put x into Ii;2

else if x intersects cores C(Ii) ∋ a < b ∈ C(Ij) then /* 2 */3

if cr(a) = j then put x into Ij ;4

else if cl(b) = i then put x into Ii;5

else if x intersects exactly one core, say a ∈ C(Ii) then /* 3 */6

put x into Ii;7

else if x does not intersect any existing core then8

if x lies between consecutive C(Ii) ∋ a < b ∈ C(Ij) then /* 4.1 */9

c′l(x)← i;10

c′r(x)← j;11

else if x > a := max(C) with a ∈ C(Ii) then /* 4.2 */12

c′l(x)← i;13

c′r(x)← color distinct from i;14

else if x < b := min(C) with b ∈ C(Ij) then /* 4.3 */15

c′r(x)← j;16

c′l(x)← color distinct from j;17

put x into Im so that {m, c′l(x), c
′

r(x)} = {1, 2, 3}18

foreach a′ ∈ C′ such that a′ ⊆ a for some a ∈ C do19

c′l(a
′)← cl(a);20

c′r(a
′)← cr(a);21

is a distinguishing proper interval representation and a ⊆ x, we must have lx < lz.
Hence rx < rz, as otherwise z would be properly contained in x. The latter implies
z ∩ y 6= ∅. This, in turn, contradicts (7).

Invariants (I1)–(I3) are trivially satisfied as the set C of cores and the coloring
functions cl, cr remain unchanged. However, some effort is needed to prove that
the last invariant (I4) is kept.

Suppose that x intersects the core b ∈ C(Ij) and j 6= i. Since a is the unique
core interval which is contained in x, we get b * x. Suppose that a < b. Then b
must be the immediate successor of a in C. To prove (I4) for x and b we need to
show that cl(b) = i. Let z ∈ Ii be an interval witnessing the left end point of a,
i.e., lz = la (see Figure 13). Now, since I∪{x} is a distinguishing proper interval

a

Ii

z

x

b

Ij

Figure 13. Case 1, proof of (I4)

representation, we have lx < lz = la and therefore rx < rz . Hence lb ∈ z. Invariant
(I4) applied to b and z gives cl(b) = i, as desired. An analogous proof delivers
cr(b) = i in the case when b < a.

Case 2. In this case the new interval x intersects exactly two consecutive core
intervals a < b with a ∈ C(Ii) and b ∈ C(Ij). By (I3) we know that i 6= j. Since we
are not in Case 1, we also know that neither a nor b is contained in x. In particular,
la < lx < ra < lb < rx < rb.
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First of all, we need to show that lines 4–5 of Algorithm 1 cover all possibilities,
i.e., either cr(a) = j or cl(b) = i. Suppose that cr(a) 6= j. Invariant (I2) applied to
a ∈ C(Ii) implies cr(a) 6= i. Hence {i, j, cr(a)} = {1, 2, 3}. But this restricts the
possible values of cl(b). Indeed, (I2) applied to b ∈ C(Ij) together with (I3) give
cl(b) 6= j and cl(b) 6= cr(a), respectively. Hence we must have cl(b) = i, exactly as
stated in line 5.

To prove that (I0)–(I4) are kept we assume that cr(a) = j, i.e., line 4 of Algorithm
1 rather than line 5 is executed. The arguments in the case cl(b) = i are analogous.
For (I0) we show that I′j := Ij ∪{x} is a weak order. Clearly, the set {x} ∪ core−1(b)
is an antichain. It remains to show that x is disjoint with all other intervals from Ij .
Suppose to the contrary that for some y ∈ Ij with core(y) 6= b we have x ∩ y 6= ∅.
As a and b are consecutive in C, either core(y) < a or core(y) > b. In the latter
case x ∩ y 6= ∅ together with rx < rb implies y ∩ b 6= ∅ (see Figure 14). Therefore,

a

Ii

y
x

core(y)b

Ij Ij

Figure 14. Case 2, proof of (I0), core(y) > b

y ∩ z 6= ∅ for every z with core(z) = b, contradicting (7). Now consider the case
when core(y) < a. Then x∩y 6= ∅ together with la < lx gives la ∈ y (see Figure 15).
Invariant (I4) applied to a and y gives cl(a) = j. Hence cl(a) = cr(a), contradicting

a

Ii

y

x

b

Ij

core(y)

Ij

Figure 15. Case 2, proof of (I0), core(y) < a

(I2).
Invariants (I1)–(I3) are trivially satisfied. Invariant (I4) holds for x and a as

cr(a) = j.

Case 3. In this case the new interval x intersects, yet does not contain, exactly one
a ∈ C. Without loss of generality assume that la < lx. Suppose that (I0) does not
hold, i.e., for some y ∈ Ii with core(y) = b 6= a we have x∩y 6= ∅. Note that we must
have y ∩ a = ∅ as otherwise y ∩ z 6= ∅ for every z with core(z) = a, contradicting
(7). Together with la < lx this gives a < y. Since a, b ∈ C(Ii), invariant (I3) yields
a c ∈ C(Ij) with i 6= j and a < c < b. Interval x intersects only one a ∈ C. Hence
we must have x < c and so c ⊆ y (see Figure 16). But this would mean that y
contains two cores b and c, which is impossible, by Claim 8(i).

We easily check that the remaining invariants (I1)–(I4) are trivially kept.

Case 4. In this case the new interval x does not intersect any element from C. It is
also the only moment when Algorithm forms a brand new core, i.e., C′ = C∪ {x}.
We only prove that invariants (I0)–(I4) are kept in Case 4.1 as the proofs in Cases 4.2
and 4.3 are analogous. In Case 4.1 the new interval x lies between two consecutive
core intervals a and b. Thus, intervals a < x < b become three consecutive cores in
C′.
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a

Ii

y
x

b

Ii

c

Ij

Figure 16. Case 3

In order to prove (I0) we will show that x does not intersect any interval from
Im. Suppose to the contrary that for some y ∈ Im we have x∩ y 6= ∅. Without loss
of generality assume that lx < ly. As a and b are consecutive in C, from y ∈ Im
and m 6= j we get b < core(y). Moreover, ly < rx < lb < rb < ry (see Figure 17).
Thus y contains two cores b and core(y), which is impossible, by Claim 8(i).

a

Ii

y

x

core(y)

Im

b

Ij

Figure 17. Case 4.1

Invariant (I1) is trivially satisfied. Invariant (I3) applied to consecutive (in I) core
intervals a ∈ C(Ii) and b ∈ C(Ij) gives i 6= j. Now, c′l(x) = i 6= j = c′r(x) together
with line 18 yields {m, c′l(x), c

′

r(x)} = {1, 2, 3}, proving (I2).
The first part of (I3) follows again from {m, i, j} = {1, 2, 3}. To verify the

second part of (I3) we need to check that cr(a) 6= c′l(x) = i and cl(b) 6= c′r(x) = j.
Applying (I2) to a and b we get cr(a) 6= i and cl(b) 6= j, respectively.

To prove (I4) assume that for some y /∈ Im we have x ∩ y 6= ∅. If lx ∈ y then
core(y) 6= a would imply core(y) < a, a ⊆ y so that y would contain two cores
core(y) and a, which is impossible, by Claim 8(i). Hence core(y) = a, y ∈ Ii and so
c′l(x) = i, as desired. The proof in the case rx ∈ y is analogous. �
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